版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆江西省撫州市南城縣九年級數(shù)學第一學期期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,⊙O是△ABC的外接圓,∠BOC=100°,則∠A的度數(shù)為()A.40° B.50° C.80° D.100°2.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm3.某中學有一塊長30cm,寬20cm的矩形空地,該中學計劃在這塊空地上劃出三分之二的區(qū)域種花,設(shè)計方案如圖所示,求花帶的寬度.設(shè)花帶的寬度為xm,則可列方程為()A.(30﹣x)(20﹣x)=×20×30 B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30 D.(30﹣2x)(20﹣x)=×20×304.如圖,AB是半圓O的直徑,半徑OC⊥AB于O,AD平分∠CAB交于點D,連接CD,OD,BD.下列結(jié)論中正確的是()A.AC∥OD B.C.△ODE∽△ADO D.5.已知關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是()A.k>-3 B.k≥-3 C.k≥0 D.k≥16.拋物線y=x2﹣2x+3的頂點坐標是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)7.對于函數(shù),下列結(jié)論錯誤的是()A.圖象頂點是 B.圖象開口向上C.圖象關(guān)于直線對稱 D.圖象最大值為﹣98.如圖,的外切正六邊形的邊長為2,則圖中陰影部分的面積為()A. B. C. D.9.正五邊形的每個內(nèi)角度數(shù)為()A.36° B.72° C.108° D.120°10.在一次籃球邀請賽中,參賽的每兩個隊之間都要比賽一場,共比賽36場.則參賽的球隊數(shù)為()A.6個 B.8個 C.9個 D.12個11.已知扇形的圓心角為45°,半徑長為12,則該扇形的弧長為()A. B.2π C.3π D.12π12.如圖,和都是等腰直角三角形,,,的頂點在的斜邊上,、交于,若,,則的長為()A. B. C. D.二、填空題(每題4分,共24分)13.若關(guān)于x的方程為一元二次方程,則m=__________.14.計算:×=______.15.方程的解是_______.16.拋物線的頂點坐標是______.17.有四條線段,分別為3,4,5,6,從中任取三條,能夠成直角三角形的概率是18.一個4米高的電線桿的影長是6米,它臨近的一個建筑物的影長是36米.則這個建筑的高度是_____m.三、解答題(共78分)19.(8分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為點E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.(1)求證:△ADF∽△DEC;(2)若AB=4,AD=3,AF=2,求AE的長.20.(8分)如圖,在平面直角坐標系xOy中,O為坐標原點,拋物線y=a(x+3)(x﹣1)(a>0)與x軸交于A,B兩點(點A在點B的左側(cè)).(1)求點A與點B的坐標;(2)若a=,點M是拋物線上一動點,若滿足∠MAO不大于45°,求點M的橫坐標m的取值范圍.(3)經(jīng)過點B的直線l:y=kx+b與y軸正半軸交于點C.與拋物線的另一個交點為點D,且CD=4BC.若點P在拋物線對稱軸上,點Q在拋物線上,以點B,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.21.(8分)一個不透明袋子中有個紅球,個綠球和個白球,這些球除顏色外無其他差別,當時,從袋中隨機摸出個球,摸到紅球和摸到白球的可能性(填“相同”或“不相同”);從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復(fù)該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于,則的值是;在的情況下,如果一次摸出兩個球,請用樹狀圖或列表法求摸出的兩個球顏色不同的概率.22.(10分)如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB、連接DO并延長交CB的延長線于點E(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;(2)若BE=4,DE=8,求AC的長.23.(10分)如圖,已知AB為⊙O的直徑,AD,BD是⊙O的弦,BC是⊙O的切線,切點為B,OC∥AD,BA,CD的延長線相交于點E.(1)求證:DC是⊙O的切線;(2)若AE=1,ED=3,求⊙O的半徑.24.(10分)下面是小東設(shè)計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.已知:如圖1,直線l及直線l外一點A.求作:直線AD,使得AD∥l.作法:如圖2,①在直線l上任取一點B,連接AB;②以點B為圓心,AB長為半徑畫弧,交直線l于點C;③分別以點A,C為圓心,AB長為半徑畫弧,兩弧交于點D(不與點B重合);④作直線AD.所以直線AD就是所求作的直線.根據(jù)小東設(shè)計的尺規(guī)作圖過程,完成下面的證明.(說明:括號里填推理的依據(jù))證明:連接CD.∵AD=CD=__________=__________,∴四邊形ABCD是().∴AD∥l().25.(12分)在平面直角坐標系xOy中,△ABC的位置如圖所示.
(1)分別寫出△ABC各個頂點的坐標;
(2)分別寫出頂點A關(guān)于x軸對稱的點A′的坐標、頂點B關(guān)于y軸對稱的點B′的坐標及頂點C關(guān)于原點對稱的點C′的坐標;
(3)求線段BC的長.26.如圖,在中,點在邊上,.點在邊上,.(1)求證:;(2)若,求的長.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半,得∠BOC=2∠A,進而可得答案.【詳解】解:∵⊙O是△ABC的外接圓,∠BOC=100°,∴∠A=∠BOC=50°.故選:B.本題考查了圓周角定理,解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、B【解析】首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長==4π,
故選B.本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.3、B【分析】根據(jù)等量關(guān)系:空白區(qū)域的面積=矩形空地的面積,列方程即可.【詳解】設(shè)花帶的寬度為xm,則可列方程為(30﹣2x)(20﹣x)=×20×30,故選:B.本題考查了一元二次方程的實際應(yīng)用-幾何問題,理清題意找準等量關(guān)系是解題的關(guān)鍵.4、A【分析】A.根據(jù)等腰三角形的性質(zhì)和角平分線的性質(zhì),利用等量代換求證∠CAD=∠ADO即可;
B.過點E作EF⊥AC,根據(jù)角平分線上的點到角的兩邊的距離相等可得OE=EF,再根據(jù)直角三角形斜邊大于直角邊可證;
C.兩三角形中,只有一個公共角的度數(shù)相等,其它兩角不相等,所以不能證明③△ODE∽△ADO;
D.根據(jù)角平分線的性質(zhì)得出∠CAD=∠BAD,根據(jù)在同圓或等圓中,相等的圓周角所對的弦相等,可得CD=BD,又因為CD+BD>BC,又由AC=BC可得AC<2CD,從而可判斷D錯誤.【詳解】解:解:A.∵AB是半圓直徑,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于點D,
∴∠CAD=∠DAO=∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,
∴A正確.
B.如圖,過點E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于點D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴B錯誤.
C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DOE≠∠DAO,
∴不能證明△ODE和△ADO相似,
∴C錯誤;D.∵AD平分∠CAB交于點D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半徑OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D錯誤.故選A.本題主要考查相似三角形的判定與性質(zhì),圓心角、弧、弦的關(guān)系,圓周角定理,等腰三角形的性質(zhì),三角形內(nèi)角和定理等知識點的靈活運用,此題步驟繁瑣,但相對而言,難易程度適中,很適合學生的訓(xùn)練.5、D【解析】根據(jù)?>0且k-1≥0列式求解即可.【詳解】由題意得()2-4×1×(-1)>0且k-1≥0,解之得k≥1.故選D.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關(guān)系,熟練掌握根的判別式與根的關(guān)系式解答本題的關(guān)鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.6、C【分析】把拋物線解析式化為頂點式可求得答案.【詳解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴頂點坐標為(1,2),故選:C.本題考查了拋物線的頂點坐標的求解,解題的關(guān)鍵是熟悉配方法.7、D【分析】根據(jù)函數(shù)解析式和二次函數(shù)的性質(zhì)可以判斷各個選項中的說法是否正確,本題得以解決.【詳解】解:A.∵函數(shù)y=(x+2)2-9,∴該函數(shù)圖象的頂點坐標是(-2,-9),故選項A正確;B.a(chǎn)=1>0,該函數(shù)圖象開口向上,故選項B正確;C.∵函數(shù)y=(x+2)2-9,∴該函數(shù)圖象關(guān)于直線x=-2對稱,故選項C正確;D.當x=-2時,該函數(shù)取得最小值y=-9,故選項D錯誤;故選:D.本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.8、A【分析】由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設(shè)點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據(jù)S陰影=S△OAB-S扇形OMN,進而可得出結(jié)論.【詳解】∵六邊形ABCDEF是正六邊形,
∴∠AOB=60°,
∴△OAB是等邊三角形,OA=OB=AB=2,
設(shè)點G為AB與⊙O的切點,連接OG,則OG⊥AB,
∴OG=OA?sin60°=2×
=
,
∴S
陰影
=S
△OAB
-S
扇形OMN
=
×2×
-
.
故選A.考核知識點:正多邊形與圓.熟記扇形面積公式是關(guān)鍵.9、C【解析】根據(jù)多邊形內(nèi)角和公式:,得出正五邊形的內(nèi)角和,再根據(jù)正五邊形的性質(zhì):五個角的角度都相等,即可得出每個內(nèi)角的度數(shù).【詳解】解:故選:C本題考查的是多邊形的內(nèi)角和公式以及正五邊形的性質(zhì),掌握這兩個知識點是解題的關(guān)鍵.10、C【分析】設(shè)有x個隊參賽,根據(jù)題意列出方程即可求出答案即可解決.【詳解】解:設(shè)有x個隊參賽,根據(jù)題意,可列方程為:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故選:C.本題考查了一元二次方程的應(yīng)用,解決本題的關(guān)鍵是正確理解題意,找到題意中蘊含的等量關(guān)系.11、C【解析】試題分析:根據(jù)弧長公式:l==3π,故選C.考點:弧長的計算.12、B【分析】連接BD,自F點分別作,交AD、BD于G、H點,通過證明,可得,根據(jù)勾股定理求出AB的長度,再根據(jù)角平分線的性質(zhì)可得,根據(jù)三角形面積公式可得,代入中即可求出BF的值.【詳解】如圖,連接BD,自F點分別作,交AD、BD于G、H點∵和都是等腰直角三角形∴在△ECA和△DCB中在Rt△ADB中,∴DF是∠ADB的角平分線∵△ADF底邊AF上的高h與△BDF底邊BF上的高h相同故答案為:B.本題考查了三角形的綜合問題,掌握等腰直角三角形的性質(zhì)、全等三角形的性質(zhì)以及判定定理、勾股定理、角平分線的性質(zhì)、三角形面積公式是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、-1【分析】根據(jù)一元二次方程的定義:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫一元二次方程進行分析即可.【詳解】解:依題意得:|m|=1,且m-1≠0,
解得m=-1.
故答案為:-1.本題考查了一元二次方程的定義,關(guān)鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.14、7【分析】利用二次根式的乘法法則計算即可.【詳解】解:原式故答案為:7本題考查二次根式的乘法運算,熟練掌握二次根式的乘法運算法則是解題關(guān)鍵.15、【分析】根據(jù)提公因式法解一元二次方程直接求解即可.【詳解】提公因式得解得.故答案為.本題主要考查一元二次方程的解法,熟練掌握一元二次方程的解法是關(guān)鍵.16、(1,3)【分析】根據(jù)頂點式:的頂點坐標為(h,k)即可求出頂點坐標.【詳解】解:由頂點式可知:的頂點坐標為:(1,3).故答案為(1,3).此題考查的是求頂點坐標,掌握頂點式:的頂點坐標為(h,k)是解決此題的關(guān)鍵.17、.【解析】試題分析:能構(gòu)成三角形的情況為:3,4,5;3,4,6;3,5,6;4,5,6這四種情況.直角三角形只有3,4,5一種情況.故能夠成直角三角形的概率是.故答案為.考點:1.勾股定理的逆定理;2.概率公式.18、24米.【分析】先設(shè)建筑物的高為h米,再根據(jù)同一時刻物高與影長成正比列出關(guān)系式求出h的值即可.【詳解】設(shè)建筑物的高為h米,由題意可得:則4:6=h:36,解得:h=24(米).故答案為24米.本題考查的是相似三角形的應(yīng)用,熟知同一時刻物高與影長成正比是解答此題的關(guān)鍵.三、解答題(共78分)19、(1)答案見解析;(2).【解析】試題分析:(1)△ADF和△DEC中,易知∠ADF=∠CED(平行線的內(nèi)錯角),而∠AFD和∠C是等角的補角,由此可判定兩個三角形相似;(2)在Rt△ABE中,由勾股定理易求得BE的長,即可求出EC的值;從而根據(jù)相似三角形得出的成比例線段求出AF的長.試題解析:()∵四邊形是平行四邊形,∴,,∴,,∵,,∴,∴.()四邊形是平行四邊形,∴,,又∵,∴,在中,,∵,∴,∴.20、(1)A(﹣3,0),B(1,0);(2)M(4,7);﹣2≤m≤4;(3)點P的坐標為P(﹣1,4)或(﹣1,).【分析】(1)y=a(x+3)(x﹣1),令y=0,則x=1或﹣3,即可求解;(2)分∠MAO=45°,∠M′AO=45°兩種情況,分別求解即可;(3)分當BD是矩形的邊,BD是矩形的邊兩種情況,分別求解即可.【詳解】(1)y=a(x+3)(x﹣1),令y=0,則x=1或﹣3,故點A、B的坐標分別為:(﹣3,0),(1,0);(2)拋物線的表達式為:y=(x+3)(x﹣1)①,當∠MAO=45°時,如圖所示,則直線AM的表達式為:y=x②,聯(lián)立①②并解得:m=x=4或﹣3(舍去﹣3),故點M(4,7);②∠M′AO=45°時,同理可得:點M(﹣2,﹣1);故:﹣2≤m≤4;(3)①當BD是矩形的對角線時,如圖2所示,過點Q作x軸的平行線EF,過點B作BE⊥EF,過點D作DF⊥EF,拋物線的表達式為:y=ax2+2ax﹣3a,函數(shù)的對稱軸為:x=1,拋物線點A、B的坐標分別為:(﹣3,0)、(1,0),則點P的橫坐標為:1,OB=1,而CD=4BC,則點D的橫坐標為:﹣4,故點D(﹣4,5a),即HD=5a,線段BD的中點K的橫坐標為:,則點Q的橫坐標為:﹣2,則點Q(﹣2,﹣3a),則HF=BE=3a,∵∠DQF+∠BQE=90°,∠BQE+∠QBE=90°,∴∠QBE=∠DQF,∴△DFQ∽△QEB,則,,解得:a=(舍去負值),同理△PGB≌△DFQ(AAS),∴PG=DF=8a=4,故點P(﹣1,4);②如圖3,當BD是矩形的邊時,作DI⊥x軸,QN⊥x軸,過點P作PL⊥DI于點L,同理△PLD≌△BNQ(AAS),∴BN=PL=3,∴點Q的橫坐標為4,則點Q(4,21a),則QN=DL=21a,同理△PLD∽△DIB,∴,即,解得:a=(舍去負值),LI=26a=,故點P(﹣1,);綜上,點P的坐標為:P(﹣1,4)或(﹣1,).本題主要考查的是二次函數(shù)綜合運用,涉及到矩形的性質(zhì)、圖形的全等和相似等,其中(2)、(3),要注意分類求解,避免遺漏.21、(1)相同;(2)2;(3).【分析】(1)確定摸到紅球的概率和摸到白球的概率,比較后即可得到答案;(2)根據(jù)頻率即可計算得出n的值;(3)畫樹狀圖即可解答.【詳解】(1)當n=1時,袋子中共3個球,∵摸到紅球的概率為,摸到白球的概率為,∵摸到紅球和摸到白球的可能性相同,故答案為:相同;(2)由題意得:,得n=2,故答案為:2;(3)樹狀圖如下:根據(jù)樹狀圖呈現(xiàn)的結(jié)果可得:(摸出的兩個球顏色不同)此題考查事件的概率,確定事件可能發(fā)生的所有情況機會應(yīng)是均等的,某事件發(fā)生的次數(shù),即可代入公式求出事件的概率.22、(1)相切,證明見解析;(2)6.【分析】(1)欲證明CD是切線,只要證明OD⊥CD,利用全等三角形的性質(zhì)即可證明;(2)設(shè)⊙O的半徑為r.在Rt△OBE中,根據(jù)OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=,推出,可得CD=BC=6,再利用勾股定理即可解決問題.【詳解】解:(1)相切,理由如下,如圖,連接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切線;(2)設(shè)⊙O的半徑為r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan∠E=,∴,∴CD=BC=6,在Rt△ABC中,AC=.本題考查直線與圓的位置關(guān)系、圓周角定理、勾股定理、銳角三角函數(shù)等知識,正確添加輔助線,熟練掌握和靈活應(yīng)用相關(guān)知識解決問題是關(guān)鍵.23、(1)證明見解析;(2)1.【解析】試題分析:(1)、連接DO,根據(jù)平行線的性質(zhì)得出∠DAO=∠COB,∠ADO=∠COD,結(jié)合OA=OD得出∠COD=∠COB,從而得出△COD和△COB全等,從而得出切線;(2)、設(shè)⊙O的半徑為R,則OD=R,OE=R+1,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 泵站安全施工方案
- 污水池內(nèi)壁防腐加固施工方案
- 施工組織設(shè)計方案撰寫技巧
- 高層建筑加固改造施工方案
- 磚砌體拆除工程實施方案
- 高大模板支撐體系專項施工工藝方案
- 基坑開挖嚴格遵循設(shè)計和專項施工方案
- 幕墻施工方案
- 機電安裝施工步驟方案設(shè)計
- 工業(yè)機器人應(yīng)用運維體系建設(shè)方案
- 2025年中遠海運招聘1189人(含社招)筆試參考題庫附帶答案詳解
- (正式版)DB61∕T 1878-2024 《餐飲業(yè)油煙管道系統(tǒng)清洗規(guī)范》
- 水利水電工程單元工程施工質(zhì)量驗收標準 第4部分:堤防與河道整治工程
- 青鳥纜式線型感溫火災(zāi)探測器JTW-LD-JBF4310施工指導(dǎo)及調(diào)試注意事項
- 譯林版新高一英語《語法填空》專項練習題匯編(含答案解析)
- 腎病尿檢知識培訓(xùn)課件
- 2025至2030中國水工金屬結(jié)構(gòu)行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 《涉外法治概論》課件 杜濤 -第1-6章 涉外法治的基礎(chǔ)理論-涉外經(jīng)濟管理法律制度
- 2025微信小程序轉(zhuǎn)讓合同
- 2.3 第2課時 中國第一大河-長江 導(dǎo)學案(含答案)湘教版(2024)地理八年級上冊
- 醫(yī)院一站式服務(wù)
評論
0/150
提交評論