2026屆江蘇省啟東市南苑中學九年級數(shù)學第一學期期末考試試題含解析_第1頁
2026屆江蘇省啟東市南苑中學九年級數(shù)學第一學期期末考試試題含解析_第2頁
2026屆江蘇省啟東市南苑中學九年級數(shù)學第一學期期末考試試題含解析_第3頁
2026屆江蘇省啟東市南苑中學九年級數(shù)學第一學期期末考試試題含解析_第4頁
2026屆江蘇省啟東市南苑中學九年級數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆江蘇省啟東市南苑中學九年級數(shù)學第一學期期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.邊長相等的正方形與正六邊形按如圖方式拼接在一起,則的度數(shù)為()A. B. C. D.2.如圖,直線分別與⊙相切于,且∥,連接,若,則梯形的面積等于()A.64 B.48 C.36 D.243.一元二次方程配方后化為()A. B. C. D.4.不等式的解集在數(shù)軸上表示正確的是()A. B.C. D.5.設,下列變形正確的是()A. B. C. D.6.如圖,在矩形ABCD中,AD=10,AB=6,E為BC上一點,DE平分∠AEC,則CE的長為()A.1 B.2C.3 D.47.已知正比例函數(shù)y1的圖象與反比例函數(shù)y2圖象相交于點A(2,4),下列說法正確的是(A.反比例函數(shù)y2的解析式是B.兩個函數(shù)圖象的另一交點坐標為(2,-4)C.當x<-2或0<x<2時,yD.正比例函數(shù)y1與反比例函數(shù)y2都隨8.函數(shù)與的圖象如圖所示,有以下結論:①b2-4c>1;②b+c=1;③3b+c+6=1;④當1<<3時,<1.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個9.在一個不透明的袋中裝有個紅、黃、藍三種顏色的球,除顏色外其他都相同,佳佳和琪琪通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在左右,則袋中紅球大約有()A.個 B.個 C.個 D.個10.2019年教育部等九部門印發(fā)中小學生減負三十條:嚴控書面作業(yè)總量,初中家庭作業(yè)不超過90分鐘.某初中學校為了盡快落實減負三十條,了解學生做書面家庭作業(yè)的時間,隨機調查了40名同學每天做書面家庭作業(yè)的時間,情況如下表.下列關于40名同學每天做書面家庭作業(yè)的時間說法中,錯誤的是()書面家庭作業(yè)時間(分鐘)708090100110學生人數(shù)(人)472072A.眾數(shù)是90分鐘 B.估計全校每天做書面家庭作業(yè)的平均時間是89分鐘C.中位數(shù)是90分鐘 D.估計全校每天做書面家庭作業(yè)的時間超過90分鐘的有9人11.對于二次函數(shù)y=4(x+1)(x﹣3)下列說法正確的是()A.圖象開口向下B.與x軸交點坐標是(1,0)和(﹣3,0)C.x<0時,y隨x的增大而減小D.圖象的對稱軸是直線x=﹣112.如圖,平行四邊形的頂點,在軸上,頂點在上,頂點在上,則平行四邊形的面積是()A. B. C. D.二、填空題(每題4分,共24分)13.一元二次方程x2=x的解為.14.已知且為銳角,則_____.15.如圖,在△ABC中,∠C=90°,∠ADC=60°,∠B=30°,若CD=3cm,則BD=_____cm.16.如圖,將⊙O沿弦AB折疊,圓弧恰好經過圓心O,點P是優(yōu)弧上一點,則∠APB的度數(shù)為_____.17.在△ABC中,∠C=90°,AC=,∠CAB的平分線交BC于D,且,那么tan∠BAC=_________.18.如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足,連接AF并延長交⊙O于點E,連接AD、DE,若CF=2,AF=1.給出下列結論:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正確的是(寫出所有正確結論的序號).三、解答題(共78分)19.(8分)某學校為了解學生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項選修活動的學生(每人必選且只能選修一項)進行抽樣調查.并根據(jù)收集的數(shù)據(jù)繪制了圖①和圖②兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:(1)本次調查的學生共有人;在扇形統(tǒng)計圖中,B所對應的扇形的圓心角的度數(shù)是;(2)將條形統(tǒng)計圖補充完整;(3)在被調查選修古典舞的學生中有4名團員,其中有1名男生和3名女生,學校想從這4人中任選2人進行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是1男1女的概率.20.(8分)如圖,點,在反比例函數(shù)的圖象上,作軸于點.⑴求反比例函數(shù)的表達式;⑵若的面積為,求點的坐標.21.(8分)已知是二次函數(shù),且函數(shù)圖象有最高點.(1)求的值;(2)當為何值時,隨的增大而減少.22.(10分)如圖,⊙O的半徑為,A、B為⊙O上兩點,C為⊙O內一點,AC⊥BC,AC=,BC=.(1)判斷點O、C、B的位置關系;(2)求圖中陰影部分的面積.23.(10分)如圖,利用尺規(guī),在△ABC的邊AC下方作∠CAE=∠ACB,在射線AE上截取AD=BC,連接CD,并證明:CD=AB.(尺規(guī)作圖要求保留作圖痕跡,不寫作法)24.(10分)如圖,直線與雙曲線在第一象限內交于兩點,已知.求的值及直線的解析式;根據(jù)函數(shù)圖象,直接寫出不等式的解集.25.(12分)如圖,在平面直角坐標系中,拋物線與軸交于點,點,與軸交于點,連接,位于軸右側且垂直于軸的動直線,沿軸正方向從運動到(不含點和點),且分別交拋物線、線段以及軸于點,,.連接,,,,.(1)求拋物線的表達式;(2)如圖1,當直線運動時,求使得和相似的點點的橫坐標;(3)如圖1,當直線運動時,求面積的最大值;(4)如圖2,拋物線的對稱軸交軸于點,過點作交軸于點.點、分別在對稱軸和軸上運動,連接、.當?shù)拿娣e最大時,請直接寫出的最小值.26.某化肥廠2019年生產氮肥4000噸,現(xiàn)準備通過改進技術提升生產效率,計劃到2021年生產氮肥4840噸.現(xiàn)技術攻關小組按要求給出甲、乙兩種技術改進方案,其中運用甲方案能使每年產量增長的百分率相同,運用乙方案能使每年增長的產量相同.問運用哪一種方案能使2020年氮肥的產量更高?高多少?

參考答案一、選擇題(每題4分,共48分)1、B【解析】利用多邊形的內角和定理求出正方形與正六邊形的內角和,進而求出每一個內角,根據(jù)等腰三角形性質,即可確定出所求角的度數(shù).【詳解】正方形的內角和為360°,每一個內角為90°;

正六邊形的內角和為720°,每一個內角為120°,

則=360°-120°-90°=150°,因為AB=AC,所以==15°

故選B此題考查了多邊形內角和外角,等腰三角形性質,熟練掌握多邊形的內角和定理是解本題的關鍵.2、B【分析】先根據(jù)切線長定理得出,然后利用面積求出OF的長度,即可得到圓的半徑,最后利用梯形的面積公式即可求出梯形的面積.【詳解】連接OF,∵直線分別與⊙相切于,∴.在和中,∴,∴.在和中,∴,∴.∵,.∵,.,∴,,∴梯形的面積為.故選:B.本題主要考查切線的性質,切線長定理,梯形的面積公式,掌握切線的性質和切線長定理是解題的關鍵.3、A【分析】先把常數(shù)項移到方程的右邊,再在方程兩邊同時加上一次項系數(shù)一半的平方,即可.【詳解】移項得:,方程兩邊同加上9,得:,即:,故選A.本題主要考查解一元二次方程的配方法,熟練掌握完全平方公式,是解題的關鍵.4、B【解析】先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】解:,移項得:,合并同類項得:,系數(shù)化為1得,,在數(shù)軸上表示為:故選:B.本題考查了在數(shù)軸上表示不等式的解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.5、D【分析】根據(jù)比例的性質逐個判斷即可.【詳解】解:由得,2a=3b,A、∵,∴2b=3a,故本選項不符合題意;

B、∵,∴3a=2b,故本選項不符合題意;

C、,故本選項不符合題意;

D、,故本選項符合題意;

故選:D.本題考查了比例的性質,能熟記比例的性質是解此題的關鍵,如果,那么ad=bc.6、B【分析】根據(jù)平行線的性質以及角平分線的性質證明∠ADE=∠AED,根據(jù)等角對等邊,即可求得AE的長,在直角△ABE中,利用勾股定理求得BE的長,則CE的長即可求解.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE=AE2∴CE=BC﹣BE=AD﹣BE=10﹣8=1.故選B.考點:矩形的性質;角平分線的性質.7、C【解析】由題意可求正比例函數(shù)解析式和反比例函數(shù)解析式,由正比例函數(shù)和反比例函數(shù)的性質可判斷求解.【詳解】解:∵正比例函數(shù)y1的圖象與反比例函數(shù)y2的圖象相交于點∴正比例函數(shù)y1=2x∴兩個函數(shù)圖象的另一個角點為(-2,-4)∴A,B選項錯誤∵正比例函數(shù)y1=2x中,y隨x的增大而增大,反比例函數(shù)y2=8∴D選項錯誤∵當x<-2或0<x<2時,y∴選項C正確故選:C.本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟練運用反比例函數(shù)與一次函數(shù)的性質解決問題是本題的關鍵.8、C【分析】利用二次函數(shù)與一元二次方程的聯(lián)系對①進行判斷;利用,可對②進行判斷;利用,對③進行判斷;根據(jù)時,可對④進行判斷.【詳解】解:拋物線與軸沒有公共點,△,所以①錯誤;,,,即,所以②正確;,,,,所以③正確;時,,的解集為,所以④正確.故選:C.本題考查二次函數(shù)圖象與系數(shù)的關系、二次函數(shù)與一元二次方程、二次函數(shù)與不等式,掌握二次函數(shù)的性質是解題的關鍵.9、A【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設出未知數(shù)列出方程求解.【詳解】設袋中有紅球x個,由題意得解得x=10,故選:A.本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.10、D【分析】利用眾數(shù)、中位數(shù)及平均數(shù)的定義分別確定后即可得到本題的正確的選項.【詳解】解:A、書面家庭作業(yè)時間為90分鐘的有20人,最多,故眾數(shù)為90分鐘,正確;B、共40人,中位數(shù)是第20和第21人的平均數(shù),即=90,正確;C、平均時間為:×(70×4+80×7+90×20+100×8+110)=89,正確;D、隨機調查了40名同學中,每天做書面家庭作業(yè)的時間超過90分鐘的有8+1=9人,故估計全校每天做書面家庭作業(yè)的時間超過90分鐘的有9人說法錯誤,故選:D.本題考查了眾數(shù)、中位數(shù)及平均數(shù)的定義,屬于統(tǒng)計基礎題,比較簡單.11、C【解析】先把解析式化為頂點式的二次函數(shù)解析式,再利用二次函數(shù)的性質求解即可.【詳解】A.∵a=4>0,圖象開口向上,故本選項錯誤,

B.與x軸交點坐標是(-1,0)和(3,0),故本選項錯誤,

C.當x<0時,y隨x的增大而減小,故本選項正確,

D.圖象的對稱軸是直線x=1,故本選項錯誤,

故選C.本題主要考查了二次函數(shù)的性質,解題的關鍵是理解并靈活運用二次函數(shù)的性質.12、D【分析】先過點A作AE⊥y軸于點E,過點C作CD⊥y軸于點D,再根據(jù)反比例函數(shù)系數(shù)k的幾何意義,求得△ABE的面積=△COD的面積相等=|k2|,△AOE的面積=△CBD的面積相等=|k1|,最后計算平行四邊形的面積.【詳解】解:過點A作AE⊥y軸于點E,過點C作CD⊥y軸于點D,根據(jù)∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE與S△COD相等,又∵點C在的圖象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四邊形OABC的面積=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故選D.本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.二、填空題(每題4分,共24分)13、x1=0,x2=1.【解析】試題分析:首先把x移項,再把方程的左面分解因式,即可得到答案.解:x2=x,移項得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案為x1=0,x2=1.考點:解一元二次方程-因式分解法.14、2【分析】根據(jù)特殊角的三角函數(shù)值,先求出,然后代入計算,即可得到答案.【詳解】解:∵,為銳角,∴,∴;∴====;故答案為:2.本題考查了特殊角的三角函數(shù)值,二次根式的性質,負整數(shù)指數(shù)冪,零次冪,解題的關鍵是正確求出,熟練掌握運算法則進行計算.15、1【分析】根據(jù)30°直角三角形的比例關系求出AD,再根據(jù)外角定理證明∠DAB=∠B,即可得出BD=AD.【詳解】∵∠B=30°,∠ADC=10°,∴∠BAD=∠ADC﹣∠B=30°,∴AD=BD,∵∠C=90°,∴∠CAD=30°,∴BD=AC=2CD=1cm,故答案為:1.本題考查30°直角三角形的性質、外交定理,關鍵在于熟練掌握基礎知識并靈活運用.16、60°【解析】分析:作半徑OC⊥AB于D,連結OA、OB,如圖,根據(jù)折疊的性質得OD=CD,則OD=OA,根據(jù)含30度的直角三角形三邊的關系得到∠OAD=30°,接著根據(jù)三角形內角和定理可計算出∠AOB=120°,然后根據(jù)圓周角定理計算∠APB的度數(shù).詳解:如圖作半徑OC⊥AB于D,連結OA、OB.∵將⊙O沿弦AB折疊,圓弧恰好經過圓心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°.∵OA=OB,∴∠ABO=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故答案為60°.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了含30度的直角三角形三邊的關系和折疊的性質,求得∠OAD=30°是解題的關鍵.17、【分析】根據(jù)勾股定理求出DC,推出∠DAC=30°,求出∠BAC的度數(shù),即可得出tan∠BAC的值.【詳解】在△DAC中,∠C=90°,由勾股定理得:DC,∴DCAD,∴∠DAC=30°,∴∠BAC=2×30°=60°,∴tan∠BAC=tan60°.故答案為:.本題考查了含30度角的直角三角形,銳角三角函數(shù)的定義,能求出∠DAC的度數(shù)是解答本題的關鍵.18、①②④.【解析】①∵AB是⊙O的直徑,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED,故①正確;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2,故②正確;③∵AF=1,F(xiàn)G=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=,故③錯誤;④∵DF=DG+FG=6,AD==,∴S△ADF=DF?AG=×6×,∵△ADF∽△AED,∴,∴=,∴S△AED=,∴S△DEF=S△AED﹣S△ADF=;故④正確.故答案為①②④.三、解答題(共78分)19、(1)200、144;(2)補全圖形見解析;(3)被選中的2人恰好是1男1女的概率.【分析】(1)由A活動的人數(shù)及其所占百分比可得總人數(shù),用360°乘以B活動人數(shù)所占比例即可得;

(2)用總人數(shù)減去其它活動人數(shù)求出C的人數(shù),從而補全圖形;

(3)列表得出所有等可能的情況數(shù),找出剛好抽到一男一女的情況數(shù),即可求出所求的概率.【詳解】(1)本次調查的學生共有30÷15%=200(人),扇形統(tǒng)計圖中,B所對應的扇形的圓心角的度數(shù)是360°×=144°,故答案為200、144;(2)C活動人數(shù)為200﹣(30+80+20)=70(人),補全圖形如下:(3)畫樹狀圖為:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能情況,1男1女有6種情況,∴被選中的2人恰好是1男1女的概率.本題考查了扇形統(tǒng)計圖,條形統(tǒng)計圖,樹狀圖等知識點,解題時注意:概率=所求情況數(shù)與總情況數(shù)之比.20、(1);(2)【分析】(1)利用待定系數(shù)法即可解決問題;

(2)利用三角形的面積公式構建方程求出n,再利用待定系數(shù)法求出m的值即可;【詳解】解:(1)∵點在反比例函數(shù)圖象上,,∴反比例函數(shù)的解析式為:.(2)由題意:,,.本題考查反比例函數(shù)的應用,解題的關鍵是熟練掌握待定系數(shù)法,學會構建方程解決問題,屬于中考??碱}型.21、(1);(2)當時,隨的增大而減少【分析】(1)根據(jù)二次函數(shù)的定義得出k2+k-4=2,再利用函數(shù)圖象有最高點,得出k+2<0,即可得出k的值;(2)利用(1)中k的值得出二次函數(shù)的解析式,利用形如y=ax2(a≠0)的二次函數(shù)頂點坐標為(0,0),對稱軸是y軸即可得出答案.【詳解】(1)∵是二次函數(shù),∴k2+k-4=2且k+2≠0,解得k=-1或k=2,∵函數(shù)有最高點,∴拋物線的開口向下,∴k+2<0,解得k<-2,∴k=-1.

(2)當k=-1時,y=-x2頂點坐標(0,0),對稱軸為y軸,當x>0時,y隨x的增大而減少.此題主要考查了二次函數(shù)的定義以及其性質,利用函數(shù)圖象有最高點,得出二次函數(shù)的開口向下是解決問題的關鍵.22、(1)O、C、B三點在一條直線上,見解析;(2)【分析】(1)連接OA、OB、OC,證明∠ABC=∠ABO=60°,從而證得O、C、B三點在一條直線上;(2)利用扇形面積與三角形面積的差即可求得答案.【詳解】(1)答:O、C、B三點在一條直線上.證明如下:連接OA、OB、OC,在中,,∵∴∠ABC=60°,在中,∵OA=OB=AB,∴△OAB是等邊三角形,∴∠ABO=60°,故點C在線段OB上,即O、C、B三點在一條直線上.(2)如圖,由(1)得:△OAB是等邊三角形,∴∠O=60°,∴.本題考查了扇形面積公式與三角形面積公式,勾股定理、特殊角的三角函數(shù)值,利用證明∠ABC=∠ABO=60°,證得O、C、B三點在一條直線上是解題的關鍵.23、作圖見解析,證明見解析.【分析】根據(jù)作一個角等于已知角的作法畫出∠CAE并截取AD=BC即可畫出圖形,利用SAS即可證明△ACB≌△CAD,可得CD=AB.【詳解】如圖所示:∵AC=CA,∠ACB=∠CAD,AD=CB,∴△ACB≌△CAD(SAS),∴CD=AB.本題考查尺規(guī)作圖——作一個角等于已知角及全等三角形的判定與性質,正確作出圖形并熟練掌握全等三角形的判定定理是解題關鍵.24、(1),;(2)或.【分析】⑴將點A(1,m)B(2,1)代入y2得出k2,m;再將A,B坐標代入y1中,求出即可;⑵直接根據(jù)函數(shù)圖像寫出答案即可.【詳解】解:點在雙曲線上,雙

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論