專題3.5.1一元一次不等式組九大題型(一課一講)2025-2026八年級上冊數(shù)學同步講練【浙教版】-原卷版_第1頁
專題3.5.1一元一次不等式組九大題型(一課一講)2025-2026八年級上冊數(shù)學同步講練【浙教版】-原卷版_第2頁
專題3.5.1一元一次不等式組九大題型(一課一講)2025-2026八年級上冊數(shù)學同步講練【浙教版】-原卷版_第3頁
專題3.5.1一元一次不等式組九大題型(一課一講)2025-2026八年級上冊數(shù)學同步講練【浙教版】-原卷版_第4頁
專題3.5.1一元一次不等式組九大題型(一課一講)2025-2026八年級上冊數(shù)學同步講練【浙教版】-原卷版_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題3.5.1一元一次不等式組九大題型(一課一講)①一元一次不等式組的定義一般地,由幾個含同一個未知數(shù)的一元一次不等式所組成的一組不等式,叫做一元一次不等式組。組成不等式組的各個不等式解集的公共部分,就是不等式組的解集。當它們沒有公共部分時,我們稱這個不等式組無解。題型一:判斷是否為一元一次不等式組【例題1】下列不等式組中,是一元一次不等式組的是(

)A.x>2x?1<?3 B.C.3x?2>0x?2x+3>0【變式訓練1-1】在下列各式中,是一元一次不等式組的是(

)A.x+3>21x+2≤5 B.x+y>4x?y<6 C.【變式訓練1-2】下列不等式組:①x>?2x<3②x>0x+2>4③x+1>0y?4<0④其中是一元一次不等式組的有(

)A.2個 B.3個 C.4個 D.5個【變式訓練1-3】(24-25八下·貴州畢節(jié)畢節(jié)三聯(lián)學校·月考)下列是一元一次不等式組的是()A.2y?7<63x+3>1 B.C.x+2=63x+5>1 D.【變式訓練1-4】下列各式中是一元一次不等式組的是()A.x+3<21x+2≥5C.x+4≥?36<12 D.【變式訓練1-5】下列選項中是一元一次不等式組的是()A.x?y>0y+z>0 B.x2?x>0x+1<0 C.題型二:一元一次不等式組在數(shù)軸上表示【例題2】不等式組x?2>02x?6≥0的解集在數(shù)軸上表示為(

A. B.C. D.【變式訓練2-1】(2025·江蘇省蘇州市·期末)不等式組1?2x<A. B.C. D.【變式訓練2-2】不等式組x?1>02?x≥0的解集在數(shù)軸上表示為(

A. B.C. D.【變式訓練2-3】不等式組9x>7x?8x+12≤xA.B.C. D.【變式訓練2-4】(24-25九下·四川成都第七中學初中學?!て谥?在數(shù)軸上表示不等式組x+1≥22x≤6的解集,正確的是(

A. B.C. D.【變式訓練2-5】(25-26九上·浙江溫州瑞安五校聯(lián)考·)滿足不等式組x?7>3(1?3x)2?xA. B.C. D.題型三:解一元一次不等式組(計算題)【例題3】解不等式組3x?2>x+21【變式訓練3-1】(24-25八下·貴州貴陽第十九中學·期中)解下列不等式和不等式組,并將解集表示在數(shù)軸上.(1)2x?1(2)x?3【變式訓練3-2】解不等式組2x+5≤3x+2【變式訓練3-3】(24-25九上·新疆烏魯木齊九十八中學·月考)解不等式組?2x+1【變式訓練3-4】(24-25七下·重慶育才中學?!て谀?解不等式組:(1)解不等式組2x+1<3xx+1(2)解不等式組x?3x?2【變式訓練3-5】(24-25八下·貴州白云三中·期中)按要求解不等式組(1)求2x+1<3x2x+1(2)求3x+6≥5x?2題型四:求一元一次不等式組的整數(shù)解【例題4】不等式組x?5<x?834A.3 B.2 C.0 D.?1【變式訓練4-1】(2025九·廣東省佛山市·模擬)不等式組4x?1<2x+37?3A.?3 B.3 C.4 D.5【變式訓練4-2】不等式組2x+2>03(x?1)≤6的整數(shù)解有(

A.1個 B.2個 C.3個 D.4個【變式訓練4-3】(23-24七下·山西呂梁交口縣部分學校·期末)不等式組4x+2≤7x+14x?5<A.0,1,2,3 B.1,2,3 C.?2,?1,【變式訓練4-4】(24-25七下·吉林長春德惠第二十九中學·期末)不等式組3x?2≤71?2x<3的解集中,有(

A.3 B.4 C.5 D.6【變式訓練4-5】(24-25七下·遼寧大連普蘭店·期末)能使不等式?5<x≤4成立的所有整數(shù)x的和是(A.3 B.7 C.9 D.10題型五:已知一元一次不等式組的整數(shù)解求參數(shù)取值范圍【例題5】關于x的不等式組3x>5(x?2)+8a?x≤0整數(shù)解共有3個,則a的取值范圍是(

A.?3<a<?2 B.?3≤a≤?2 C.?3<a≤?2 D.?3≤a<?2【變式訓練5-1】(24-25七下·江西豐城·期中)若關于x的不等式組x?m<03x>2x?1僅有2個整數(shù)解,則m的取值范圍是(A.0<m<1 B.0<m≤1 C.0≤m<1 D.0≤m≤1【變式訓練5-2】(24-25七下·江蘇常州溧陽·期末)若關于x的不等式組x<m3?2x≤1的整數(shù)解共有4個,則m的取值范圍是(

A.4≤m<5 B.4<m<5C.4≤m≤5 D.4<m≤5【變式訓練5-3】(24-25七下·山東煙臺龍口·期末)已知關于x的不等式組x?a>02?2x>0A.?6<a<?5 B.?6≤a≤?5 C.?6<a≤?5 D.?6≤a<?5【變式訓練5-4】(24-25七下·重慶渝中區(qū)·期末)關于x的不等式組x+2≥?12x?m<0的所有整數(shù)解的和為?5,則mA.?4≤m<2 B.2<m≤4C.?4<m≤?2或2<m≤4 D.?4≤m<?2或2≤m<4【變式訓練5-5】(24-25七下·陜西榆林高新區(qū)·期末)若關于x的不等式組x?2a<0x+23>23A.1 B.2 C.3 D.4題型六:一元一次不等式與分式方程綜合【例題6】若關于y的不等式組3y?12>1a+5y3≤8有且僅有3個整數(shù)解,且關于x的分式方程a?2【變式訓練6-1】(24-25九下·重慶開州區(qū)大進初級中學·月考)若關于x的一元一次不等式組x+13≤26x?a>2有且只有4個整數(shù)解,且關于y的分式方程3yy?1=【變式訓練6-2】若關于y的不等式組y?2<y+234y+1?m≥0有且只有4個整數(shù)解,且關于x的分式方程3?11?x【變式訓練6-3】(24-25九上·重慶巴渝學?!ぴ驴?若關于x的不等式組3x?a>2(1?x)x?12≥x+23?1的解集為x≥1,關于y的分式方程【變式訓練6-4】(24-25七下·安徽池州青陽縣·期末)已知關于x的一元一次不等式組3?x<x+13x?a>?2的解集為x>2,且關于y的分式方程ay?5y?3+【變式訓練6-5】(24-25七下·重慶永川區(qū)·期末)若關于x的不等式組3x+2≤16?2x9x+12>2a有且只有3個整數(shù)解,且關于y的方程y?4y?76題型七:一元一次不等式與二元一次方程綜合【例題7】關于x,y的二元一次方程組kx+y=43x+y=0的解為整數(shù),關于z的不等式組3z>z?4A.6 B.7 C.11 D.12【變式訓練7-1】(24-25下·吉林東北師大附中凈月實驗?!て谀?若不等式組x?b<0x?a>0的解集為2<x<3,則關于x,y的方程組ax+y=5為.【變式訓練7-2】(25-26八上·重慶渝中區(qū)魯能巴蜀中學校·期中)如果關于x的不等式組x?43?x<?4x?m>0的解集為x>4,且整數(shù)m使得關于x,y的二元一次方程組mx+y=83x+y=1的解為整數(shù)(x,y均為整數(shù)),則符合條件的所有整數(shù)【變式訓練7-3】(23-24八下·四川成都通錦中學?!ぴ驴?若關于x的一元一次不等式組4k+1>4x+15x?3≤3x+1的解集是x<k,且關于y的方程2y?1=k?y有正整數(shù)解,則符合條件的整數(shù)k【變式訓練7-4】(23-24七下·重慶育才中學?!て谀?若m為正整數(shù),關于x,y的二元一次方程組mx+2y=103x?2y=0的解為整數(shù),且關于z的不等式z?n>2z?2n>1的解集是z>7,則滿足條件的m與n的和為【變式訓練7-5】(24-25七·重慶兩江新區(qū)·)如果關于x的不等式組x?m2>0x?43?x<?4的解集為x>4,且整數(shù)m使得關于xy的二元一次方程組mx+y=83x+y=1的解為整數(shù)(題型八:根據(jù)一元一次不等式解集的情況求參數(shù)【例題8】如果不等式組2x?5>3x?1?x<m的解集是無解,那么m的取值范圍是(A.m=2 B.m≥2 C.m<2 D.m≤2【變式訓練8-1】(24-25七下·安徽定遠縣七里塘中學·月考)關于x的不等式組3x?2>4x+1x<a的解集為x<?6,那么a的取值范圍為(A.a(chǎn)=2 B.a(chǎn)≥?6 C.a(chǎn)<2 D.a(chǎn)>?6【變式訓練8-2】(24-25七下·廣東惠州博羅縣·期末)若不等式組x+a≥01?2x>x?2無解,則實數(shù)aA.a(chǎn)≥1 B.a(chǎn)<1 C.a(chǎn)≤1 D.a(chǎn)≤?1【變式訓練8-3】(24-25八下·貴州貴陽第十九中學·期中)若關于x的不等式組4?x>52+x>3?2a無解,則a的取值范圍是(

A.a(chǎn)<1 B.a(chǎn)≤1 C.a(chǎn)>1 D.a(chǎn)≥1【變式訓練8-4】(25-26七下·湖北武漢漢鐵初級中學·月考)若不等式組5x+1<3x?55?x<k無解,則k的取值范圍是(

A.k≤8 B.k<8 C.k>8 D.k≤4【變式訓練8-5】(24-25七下·福建泉州第六中學·期中)如果不等式組x≥ax≤b無解,那么不等式組x>2?ax<2?b的解集是(A.2?a<x<2?b B.b?2<x<a?2 C.2?b<x<2?a D.無解題型九:一元一次不等式中新定義類問題【例題9】定義:如果一元一次方程的解是一元一次不等式的其中一個解,則稱該一元一次方程為該不等式的相伴方程.若方程9?x=2x,7+x=2x+12都是關于x的不等式x<2x?m的相伴方程,則m【變式訓練9-1】(23-24七下·北京第一六一中學·期中)對x,y,z定義一種新運算F,規(guī)定:F(x,y,z)=ax+by+cz,其中a,b為非負數(shù).若F(3,2,1)=5,F(xiàn)(1,2,?3)=1,設H=a+2b+c,則H的取值范圍是【變式訓練9-2】(24-25七下·江蘇蘇州吳江區(qū)·期末)定義:關于x,y的二元一次方程cx?ay=b(其中a,b,c是常數(shù))叫做方程ax+by=c的“移變方程”.例如:3x+5y=7的“移變方程”為7x?3y=5.已知常數(shù)m,n,k滿足條件3m<k<n,并且3x+m?n+3y=2n+6k+3是關于x,y的二元一次方程7m?kx+3m+2ny=3【變式訓練9-3】(24-25七下·湖北武漢江漢區(qū)四?!て谥?用符號“※”定義一種新運算:對于任意實數(shù)m和n,規(guī)定m※n=m2n?mn?3n(1)求?2※(2)若?6≤3※?2x+3≤6【變式訓練9-4】【閱讀材料】定義:若關于x的一元一次方程的解及解的2倍都在一元一次不等式組的解集范圍內,則稱這個方程為該不等式組的“絕美子方程”.例如,方程x+1=2的解為x=1,則2x=2;不等式組2x>?2x+3≤5的解集是?1<x≤2,可以發(fā)現(xiàn)方程的解x=1和2x=2都在不等式組的解集?1<x≤2的范圍內,則稱方程x+1=2為不等式組2x>?2【解決問題】(1)在方程①2x?1=0;②3x+4=0中,為不等式組2x+4>0x?1≤0的“絕美子方程”的是(2)若方程2x?k=4為不等式組2x+4>0x?1≤0的“絕美子方程”,求k(3)若方程3x+1=x+3為不等式組2x+4>0x?a≤0的“絕美子方程”,請直接寫出a【變式訓練9-5】(24-25七下·吉林長春高新技術產(chǎn)業(yè)開發(fā)區(qū)慧谷學?!ぴ?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論