蘇教七年級下冊期末解答題壓軸數(shù)學測試題目及解析_第1頁
蘇教七年級下冊期末解答題壓軸數(shù)學測試題目及解析_第2頁
蘇教七年級下冊期末解答題壓軸數(shù)學測試題目及解析_第3頁
蘇教七年級下冊期末解答題壓軸數(shù)學測試題目及解析_第4頁
蘇教七年級下冊期末解答題壓軸數(shù)學測試題目及解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

蘇教七年級下冊期末解答題壓軸數(shù)學測試題目及解析一、解答題1.如圖所示,已知射線.點E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個比值;(3)在平行移動AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請說明理由.2.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關系?請說明理由;(2)在(1)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關系.3.如圖1,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細觀察,在圖2中有個以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.4.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點與重合,平移后的得到,點的對應點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉(zhuǎn)的時間.5.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當點在上時,求度數(shù);(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數(shù).6.已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OM,OE,上的動點(A,B不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設∠OAC=x,(1)如圖1,若AB∥ON,則①∠ABO的度數(shù)是______;②當∠BAD=∠ABD時,x=______;當∠BAD=∠BDA時,x=______;(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.7.我們將內(nèi)角互為對頂角的兩個三角形稱為“對頂三角形.例如,在圖1中,的內(nèi)角與的內(nèi)角互為對頂角,則與為對頂三角形,根據(jù)三角形內(nèi)角和定理知“對頂三角形”有如下性質(zhì):.(1)(性質(zhì)理解)如圖2,在“對頂三角形”與中,,,求證:;(2)(性質(zhì)應用)如圖3,在中,點D、E分別是邊、上的點,,若比大20°,求的度數(shù);(3)(拓展提高)如圖4,已知,是的角平分線,且和的平分線和相交于點P,設,求的度數(shù)(用表示).8.(1)證明:兩條平行線被第三條直線所截,一對同旁內(nèi)角的角平分線互相垂直.已知:如圖,AB∥CD,.求證:.證明:(2)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥FN,∠AEM與∠CFN的角平分線相交于點O.求證:EO⊥FO.(3)如圖,AB∥CD,點E、F分別在直線AB、CD上,EM∥PN,MP∥NF,∠AEM與∠CFN的角平分線相交于點O,∠P=102°,求∠O的度數(shù).9.(概念認識)如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問題解決)(1)如圖②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分線BD交AC于點D,求∠BDC的度數(shù);(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰BC三分線和∠ACB鄰BC三分線,且∠BPC=140°,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點P.若∠A=m°(),∠B=54°,直接寫出∠BPC的度數(shù).(用含m的代數(shù)式表示)10.已如在四邊形中,.(1)如圖1,若,則________.(2)如圖2,若、分別平分、,判斷與位置關系并證明理由.(3)如圖3,若、分別五等分、(即,),則_______.【參考答案】一、解答題1.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設∠AOB=x,根據(jù)兩直線平行,內(nèi)錯角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當平行移動AB至∠OBA=60°時,∠OEC=∠OBA.設∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準確識圖理清圖中各角度之間的關系是解題的關鍵.2.(1),理由見解析;(2)當點P在B、O兩點之間時,;當點P在射線AM上時,.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:(1),理由見解析;(2)當點P在B、O兩點之間時,;當點P在射線AM上時,.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分兩種情況:①點P在A、M兩點之間,②點P在B、O兩點之間,分別畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出結(jié)論.【詳解】解:(1)∠CPD=∠α+∠β,理由如下:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)當點P在A、M兩點之間時,∠CPD=∠β-∠α.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當點P在B、O兩點之間時,∠CPD=∠α-∠β.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點睛】本題考查了平行線的性質(zhì)的運用,主要考核了學生的推理能力,解決問題的關鍵是作平行線構(gòu)造內(nèi)錯角,利用平行線的性質(zhì)進行推導.解題時注意:問題(2)也可以運用三角形外角性質(zhì)來解決.3.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.4.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設旋轉(zhuǎn)時間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設旋轉(zhuǎn)時間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉(zhuǎn)的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關鍵.5.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內(nèi)角互補,得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內(nèi)角互補,得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得出結(jié)論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當時,如圖3,由(1)知,,;當時,如圖4,,點,重合,,,由(1)知,,,即當以、、為頂點的三角形是直角三角形時,度數(shù)為或.【點睛】此題是三角形綜合題,主要考查了平行線的性質(zhì),三角形的內(nèi)角和定理,角的和差的計算,求出是解本題的關鍵.6.(1)①18°;②126°;③63°;(2)當x=18、36、54時,△ADB中有兩個相等的角.【分析】(1)運用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)解析:(1)①18°;②126°;③63°;(2)當x=18、36、54時,△ADB中有兩個相等的角.【分析】(1)運用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)以及△AOB的內(nèi)角和,可得x的值;(2)根據(jù)三角形內(nèi)角和定理以及直角的度數(shù),可得x的值.【詳解】解:(1)如圖1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②當∠BAD=∠ABD時,∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③當∠BAD=∠BDA時,∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案為①18°;②126°;③63°;(2)如圖2,存在這樣的x的值,使得△ADB中有兩個相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,則∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,則∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°-36°=54°;綜上所述,當x=18、36、54時,△ADB中有兩個相等的角.【點睛】本題考查了三角形的內(nèi)角和定理和三角形的外角性質(zhì)的應用,三角形的內(nèi)角和等于180°,三角形的一個外角等于和它不相鄰的兩個內(nèi)角之和.利用角平分線的性質(zhì)求出∠ABO的度數(shù)是關鍵,注意分類討論思想的運用.7.(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質(zhì)得,從而得,進而即可得到結(jié)論;(2)設=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=解析:(1)見詳解;(2)100°;(3)∠P=45°-【分析】(1)由“對頂三角形”的性質(zhì)得,從而得,進而即可得到結(jié)論;(2)設=x,=y,則=x+20°,=y-20°,可得∠ABC+∠DCB=y-20°,根據(jù)三角形內(nèi)角和定理,列出方程,即可求解;(3)設∠ABE=∠CBE=x,∠ACD=∠BCD=y,可得x+y=90°-,結(jié)合∠CEP+∠ACD=∠CDP+∠P,即可得到結(jié)論.【詳解】(1)證明:∵在“對頂三角形”與中,∴,∵,∴,∵,∴,又∵∴;(2)∵比大20°,+=+,∴設=x,=y,則=x+20°,=y-20°,∵,∴∠ABC+∠ACB=180°-∠A=180°-=x+y,∴∠ABC+∠DCB=∠ABC+∠ACB-=x+y-x-20°=y-20°,∵∠ABC+∠DCB+=180°,∴y-20°+y=180°,解得:y=100°,∴=100°;(3)∵,是的角平分線,∴設∠ABE=∠CBE=x,∠ACD=∠BCD=y,∴2x+2y+=180°,即:x+y=90°-,∵和的平分線和相交于點P,∴∠CEP=(180°-2y-x),∠CDP=(180°-2x-y),∵∠CEP+∠ACD=∠CDP+∠P,∴∠P=(180°-2y-x)+y-(180°-2x-y)=x+y=45°-,即:∠P=45°-.【點睛】本題主要考查角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì),熟練掌握“對頂三角形”的性質(zhì),是解題的關鍵.8.(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證解析:(1)直線MN分別交直線AB、CD于點E、F,∠AEF和∠CFE的角平分線OE、OF交于點O,OE⊥OF,見解析;(2)見解析;(3)51°.【分析】(1)根據(jù)平行線的性質(zhì)和角平分線定義即可證明;(2)延長交于點,過點作交于點,結(jié)合(1)的方法即可證明;(3)延長、交于點,過點作交于點.結(jié)合(1)的方法可得,再根據(jù)角平分線定義即可求出結(jié)果.【詳解】(1)已知:如圖①,,直線分別交直線,于點,,、分別平分、,求證:;證法,,、分別平分、,.,.;證法2:如圖,過點作交直線于點.,,、分別平分、,.,,..;故答案為:直線分別交直線,于點,,、分別平分、,;(2)證明:如圖,延長交于點,過點作交于點,,,,.、分別平分、,,,,..;(3)解:如圖,延長、交于點,過點作交于點.,,,由(1)證法2可知,、分別平分、,.【點睛】本題考查了平行線的判定與性質(zhì),角平分線的定義,解決本題的關鍵是掌握平行線的判定與性質(zhì).9.(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰解析:(1)95°或110°;(2)60°;(3)m°或m°或m°+°或m°﹣18°【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點.分四種情況畫圖:情況一:如圖①,當和分別是“鄰三分線”、“鄰三分線”時;情況二:如圖②,當和分別是“鄰三分線”、“鄰三分線”時;情況三:如圖③,當和分別是“鄰三分線”、“鄰三分線”時;情況四:如圖④,當和分別是“鄰三分線”、“鄰三分線”時,再根據(jù),,根據(jù)三角形外角性質(zhì),即可求出的度數(shù).【詳解】解:(1)如圖,當BD是“鄰AB三分線”時,;當BD是“鄰BC三分線”時,;(2)在△BPC中,∵,∴,又∵BP、CP分別是鄰BC三分線和鄰BC三分線,∴,∴,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論