蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)試題經(jīng)典套題_第1頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)試題經(jīng)典套題_第2頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)試題經(jīng)典套題_第3頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)試題經(jīng)典套題_第4頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)試題經(jīng)典套題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)試題經(jīng)典套題一、解答題1.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動(dòng)AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請(qǐng)說(shuō)明理由.2.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點(diǎn)同時(shí)從點(diǎn)O出發(fā),點(diǎn)A沿直線m向左運(yùn)動(dòng),點(diǎn)B沿直線n向上運(yùn)動(dòng).(1)若∠BAO和∠ABO的平分線相交于點(diǎn)Q,在點(diǎn)A,B的運(yùn)動(dòng)過(guò)程中,∠AQB的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值,若發(fā)生變化,請(qǐng)說(shuō)明理由.(2)若AP是∠BAO的鄰補(bǔ)角的平分線,BP是∠ABO的鄰補(bǔ)角的平分線,AP、BP相交于點(diǎn)P,AQ的延長(zhǎng)線交PB的延長(zhǎng)線于點(diǎn)C,在點(diǎn)A,B的運(yùn)動(dòng)過(guò)程中,∠P和∠C的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出∠P和∠C的度數(shù);若發(fā)生變化,請(qǐng)說(shuō)明理由.3.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問(wèn)題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.4.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.5.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過(guò)D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說(shuō)明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)直接寫(xiě)出比值.6.如圖,,點(diǎn)在直線上,點(diǎn)在直線和之間,,平分.(1)求的度數(shù)(用含的式子表示);(2)過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),作的平分線交于點(diǎn),請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形,猜想與的位置關(guān)系,并證明;(3)將(2)中的“作的平分線交于點(diǎn)”改為“作射線將分為兩個(gè)部分,交于點(diǎn)”,其余條件不變,連接,若恰好平分,請(qǐng)直接寫(xiě)出__________(用含的式子表示).7.我們知道:光線反射時(shí),反射光線、入射光線分別在法線兩側(cè),反射角等于入射角.如圖1,為一鏡面,為入射光線,入射點(diǎn)為點(diǎn)O,為法線(過(guò)入射點(diǎn)O且垂直于鏡面的直線),為反射光線,此時(shí)反射角等于入射角,由此可知等于.(1)兩平面鏡、相交于點(diǎn)O,一束光線從點(diǎn)A出發(fā),經(jīng)過(guò)平面鏡兩次反射后,恰好經(jīng)過(guò)點(diǎn)B.①如圖2,當(dāng)為多少度時(shí),光線?請(qǐng)說(shuō)明理由.②如圖3,若兩條光線、所在的直線相交于點(diǎn)E,延長(zhǎng)發(fā)現(xiàn)和分別為一個(gè)內(nèi)角和一個(gè)外角的平分線,則與之間滿足的等量關(guān)系是_______.(直接寫(xiě)出結(jié)果)(2)三個(gè)平面鏡、、相交于點(diǎn)M、N,一束光線從點(diǎn)A出發(fā),經(jīng)過(guò)平面鏡三次反射后,恰好經(jīng)過(guò)點(diǎn)E,請(qǐng)直接寫(xiě)出、、與之間滿足的等量關(guān)系.8.直線與直線垂直相交于點(diǎn)O,點(diǎn)A在直線上運(yùn)動(dòng),點(diǎn)B在直線上運(yùn)動(dòng).(1)如圖1,已知分別是和角的平分線,點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明變化的情況;若不發(fā)生變化,試求出的大?。?)如圖2,已知不平行分別是和的角平分線,又分別是和的角平分線,點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出的度數(shù).(3)如圖3,延長(zhǎng)至G,已知的角平分線與的角平分線及反向延長(zhǎng)線相交于,在中,如果有一個(gè)角是另一個(gè)角的3倍,則的度數(shù)為_(kāi)___(直接寫(xiě)答案)9.如圖1,在中,平分,平分.(1)若,則的度數(shù)為_(kāi)_____;(2)若,直線經(jīng)過(guò)點(diǎn).①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);②如圖3,若繞點(diǎn)旋轉(zhuǎn),分別交線段于點(diǎn),試問(wèn)在旋轉(zhuǎn)過(guò)程中的度數(shù)是否會(huì)發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請(qǐng)說(shuō)明理由:③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點(diǎn),與的延長(zhǎng)線交于點(diǎn),請(qǐng)直接寫(xiě)出與的關(guān)系(用含的代數(shù)式表示).10.已知E、D分別在的邊、上,C為平面內(nèi)一點(diǎn),、分別是、的平分線.(1)如圖1,若點(diǎn)C在上,且,求證:;(2)如圖2,若點(diǎn)C在的內(nèi)部,且,請(qǐng)猜想、、之間的數(shù)量關(guān)系,并證明;(3)若點(diǎn)C在的外部,且,請(qǐng)根據(jù)圖3、圖4直接寫(xiě)出結(jié)果出、、之間的數(shù)量關(guān)系.【參考答案】一、解答題1.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動(dòng)AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.2.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內(nèi)角各定理可求∠AQB的大小.第(2)題求∠P的大小,用鄰補(bǔ)角、角平分線、平角、直角和三角形內(nèi)角和定理等知識(shí)求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點(diǎn)睛】本題考查三角形內(nèi)角和定理,垂直,角平分線,平角,直角和角的和差等知識(shí)點(diǎn),同時(shí),也是一個(gè)以靜求動(dòng)的一個(gè)點(diǎn)型題目,有益于培養(yǎng)學(xué)生的思維幾何綜合題.3.解決問(wèn)題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問(wèn)題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問(wèn)題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問(wèn)題連接AE.∵點(diǎn)D、E分別是邊AB、BC的中點(diǎn),∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.4.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見(jiàn)解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見(jiàn)解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點(diǎn)為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點(diǎn)為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對(duì)頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問(wèn)題的關(guān)鍵.5.(1)互相平行;(2)35,20;(3)見(jiàn)解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行解析:(1)互相平行;(2)35,20;(3)見(jiàn)解析;(4)不變,【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.6.(1);(2)畫(huà)圖見(jiàn)解析,,證明見(jiàn)解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進(jìn)行求解;(2)猜測(cè),根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過(guò)等量代換求解;(3)分兩種情解析:(1);(2)畫(huà)圖見(jiàn)解析,,證明見(jiàn)解析;(3)或【分析】(1)根據(jù)平行線的傳遞性推出,再利用平行線的性質(zhì)進(jìn)行求解;(2)猜測(cè),根據(jù)平分,推導(dǎo)出,再根據(jù)、平分,通過(guò)等量代換求解;(3)分兩種情況進(jìn)行討論,即當(dāng)與,充分利用平行線的性質(zhì)、角平分線的性質(zhì)、等量代換的思想進(jìn)行求解.【詳解】(1)過(guò)點(diǎn)作,,,,.(2)根據(jù)題意,補(bǔ)全圖形如下:猜測(cè),由(1)可知:,平分,,,,,又平分,,,.(3)①如圖1,,由(2)可知:,,,,,,,,,,又平分,,;②如圖2,,(同①);若,則有,又,,,,綜上所述:或,故答案是:或.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線、三角形內(nèi)角和定理、垂直等相關(guān)知識(shí)點(diǎn),解題的關(guān)鍵是掌握相關(guān)知識(shí)點(diǎn),作出適當(dāng)?shù)妮o助線,通過(guò)分類討論及等量代換進(jìn)行求解.7.(1)①90°,理由見(jiàn)解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=解析:(1)①90°,理由見(jiàn)解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=180°,可得α+β=90°,再根據(jù)三角形內(nèi)角和定理進(jìn)行計(jì)算即可;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根據(jù)三角形外角性質(zhì)可得∠MEN=2(β-α),再根據(jù)三角形外角性質(zhì)可得∠POQ=β-α,進(jìn)而得出∠MEN=2∠POQ;(2)分別表示出∠M,∠N,∠BCD,利用四邊形內(nèi)角和表示出∠BFD,再將∠M,∠N,∠BCD進(jìn)行運(yùn)算,變形得到∠BFD,即可得到關(guān)系式.【詳解】解:(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,當(dāng)AM∥BN時(shí),∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴當(dāng)∠POQ為90度時(shí),光線AM∥NB;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)設(shè)∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BFD.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì)以及多邊形內(nèi)角和定理的綜合應(yīng)用,解題時(shí)注意:兩直線平行,同旁內(nèi)角互補(bǔ);三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.8.(1)不發(fā)生變化,∠AEB=135°;(2)不發(fā)生變化,∠CED=67.5°;(3)60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BA解析:(1)不發(fā)生變化,∠AEB=135°;(2)不發(fā)生變化,∠CED=67.5°;(3)60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BAO和∠ABO的角平分線得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)延長(zhǎng)AD、BC交于點(diǎn)F,根據(jù)直線MN與直線PQ垂直相交于O可得出∠AOB=90°,進(jìn)而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分別是∠BAP和∠ABM的角平分線,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形內(nèi)角和定理可知∠F=45°,再根據(jù)DE、CE分別是∠ADC和∠BCD的角平分線可知∠CDE+∠DCE=112.5°,進(jìn)而得出結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的3倍分四種情況進(jìn)行分類討論.【詳解】解:(1)∠AEB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分別是∠BAO和∠ABO角的平分線,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不變.延長(zhǎng)AD、BC交于點(diǎn)F.∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分別是∠BAP和∠ABM的角平分線,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分別是∠ADC和∠BCD的角平分線,∴∠CDE+∠DCE=112.5°,∴∠CED=67.5°;(3)∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=90°.在△AEF中,∵有一個(gè)角是另一個(gè)角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍棄);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍棄).∴∠ABO為60°或45°.故答案為:60°或45°.【點(diǎn)睛】本題考查的是平行線的判定和性質(zhì),三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.9.(1)130°;(2)①90-;②不變,90-;③∠NDC+∠MDB=90-.【分析】(1)根據(jù)已知,以及三角形內(nèi)角和等于180,即可求解;(2)①根據(jù)平行線的性質(zhì)可以證得∠ABD=∠BDM=解析:(1)130°;(2)①90-;②不變,90-;③∠NDC+∠MDB=90-.【分析】(1)根據(jù)已知,以及三角形內(nèi)角和等于180,即可求解;(2)①根據(jù)平行線的性質(zhì)可以證得∠ABD=∠BDM=∠MBD,∠CND=∠A=,再利用含有的式子分別表示出∠NDC、∠MDB,進(jìn)行作差,即可求解代數(shù)式;②延長(zhǎng)BD交AC于點(diǎn)E,則∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形內(nèi)角和為180,即可求解;③如圖可知,∠NDC+∠MDB=180-∠BDC,利用平角的定義,即可求解代數(shù)式.【詳解】解:(1)∵∠A=80∴∠ABC+∠ACB=180-80=100又∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=100=50.∴∠BDC=180-50=130.(2)①∵M(jìn)N//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=,∴∠NDC=180--∠ACB,∠MDB=∠ABC,∴∠NDC-∠MDB=180--∠ACB-∠ABC=180--(∠ACB+∠ABC)=180--(180-)=90-.②不變;延長(zhǎng)BD交AC于點(diǎn)E,如圖:∴∠NDE=∠MDB,∵∠BDC=180-(∠ACB+∠ABC)=180-(180-)=90+,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180-∠BDC=180-(90+)=90-,同①,說(shuō)明MN在旋轉(zhuǎn)過(guò)程中∠NDC-∠MDB的度數(shù)只與∠A有關(guān)系,而∠A始終不變,故:MN在旋轉(zhuǎn)過(guò)程中∠NDC-∠MDB的度數(shù)不會(huì)發(fā)生改變.③如圖可知,∠NDC+∠MDB=180-∠BDC,由②知∠BDC=90+,∴∠NDC+∠MDB=180-(90+)=90-.故∠NDC與∠MDB的關(guān)系是∠NDC+∠MDB=90-.【點(diǎn)睛】本題目考查平行線與三角形的綜合,涉及知識(shí)點(diǎn)有平行線的性質(zhì),三角形內(nèi)角和等于180°等,是中考的常考知識(shí)點(diǎn),難度一般,熟

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論