七年級下冊數(shù)學(xué)相期末壓軸題易錯(cuò)題試卷含答案解析_第1頁
七年級下冊數(shù)學(xué)相期末壓軸題易錯(cuò)題試卷含答案解析_第2頁
七年級下冊數(shù)學(xué)相期末壓軸題易錯(cuò)題試卷含答案解析_第3頁
七年級下冊數(shù)學(xué)相期末壓軸題易錯(cuò)題試卷含答案解析_第4頁
七年級下冊數(shù)學(xué)相期末壓軸題易錯(cuò)題試卷含答案解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、解答題1.在平面直角坐標(biāo)系中,已知點(diǎn),,連接,將向下平移6個(gè)單位得線段,其中點(diǎn)的對應(yīng)點(diǎn)為點(diǎn).(1)填空:點(diǎn)的坐標(biāo)為______,線段平移到掃過的面積為______.(2)若點(diǎn)是軸上的動(dòng)點(diǎn),連接.①如圖,當(dāng)點(diǎn)在軸正半軸時(shí),線段與線段相交于點(diǎn),用等式表示三角形的面積與三角形的面積之間的關(guān)系,并說明理由.②當(dāng)將四邊形的面積分成1∶3兩部分時(shí),求點(diǎn)的坐標(biāo).解析:(1);24;(2)①;見解析;②或【分析】(1)由平移的性質(zhì)得出點(diǎn)C坐標(biāo),AC=6,再求出AB,即可得出結(jié)論;(2)①過點(diǎn)作交于,分別用CE表示出兩個(gè)三角形的面積,即可得到答案;②根據(jù)題意,可分為兩種情況進(jìn)行討論分析:(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時(shí);當(dāng)交于點(diǎn),將四邊形分成面積為兩部分時(shí);分別求出點(diǎn)P的坐標(biāo)即可.【詳解】解:(1)∵點(diǎn)A(3,5),將AB向下平移6個(gè)單位得線段CD,∴C(3,56),即:C(3,1),由平移得,AC=6,四邊形ABDC是矩形,∵A(3,5),B(7,5),∴AB=73=4,∴CD=4,∴點(diǎn)D的坐標(biāo)為:;∴S四邊形ABDC=AB?AC=4×6=24,即:線段AB平移到CD掃過的面積為24;故答案為:;24;(2)①過點(diǎn)作交于,則,如圖:∴,又∵,∴.②(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時(shí),連接,延長交軸于點(diǎn),則,∵,又∵,∴,∴,即,∵,∴,∴,∴.(ii)當(dāng)交于點(diǎn),將四邊形分成面積為兩部分時(shí),連接,延長交軸于點(diǎn),則.過點(diǎn)作交的延長線于點(diǎn),則,∴,,即,∵,∴,又∵,即,∴,∴,∴.綜上所述,或.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了平移的性質(zhì),矩形的判定,三角形的面積公式,用分類討論的思想是解本題的關(guān)鍵.2.如圖,在下面直角坐標(biāo)系中,已知,,三點(diǎn),其中,,滿足關(guān)系式.(1)求,,的值;(2)如果在第二象限內(nèi)有一點(diǎn),請用含的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積與三角形的面積相等?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.解析:(1)a=2,b=3,c=4;(2)S四邊形ABOP=3-m;(3)存在,P(-3,).【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì),即可解答;(2)四邊形ABOP的面積=△APO的面積+△AOB的面積,即可解答;(3)存在,根據(jù)面積相等求出m的值,即可解答.【詳解】解:(1)由已知可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A(0,2),B(3,0),C(3,4),∴OA=2,OB=3,∵S△ABO=×2×3=3,S△APO=×2×(-m)=-m,∴S四邊形ABOP=S△ABO+S△APO=3+(-m)=3-m(3)存在,∵S△ABC=×4×3=6,若S四邊形ABOP=S△ABC=3-m=6,則m=-3,∴存在點(diǎn)P(-3,)使S四邊形ABOP=S△ABC.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),解決本題的關(guān)鍵是根據(jù)非負(fù)數(shù)的性質(zhì)求出a,b,c.3.如圖1,在平面直角坐標(biāo)系中,,且滿足,過作軸于.(1)求的面積.(2)若過作交軸于,且分別平分,如圖2,求的度數(shù).(3)在軸上存在點(diǎn)使得和的面積相等,請直接寫出點(diǎn)坐標(biāo).解析:(1)4;(2);(2)或.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)易得,,然后根據(jù)三角形面積公式計(jì)算;(2)過作,根據(jù)平行線性質(zhì)得,且,,所以;然后把代入計(jì)算即可;(3)分類討論:設(shè),當(dāng)在軸正半軸上時(shí),過作軸,軸,軸,利用可得到關(guān)于的方程,再解方程求出;當(dāng)在軸負(fù)半軸上時(shí),運(yùn)用同樣方法可計(jì)算出.【詳解】解:(1),,,,,,,,的面積;(2)解:軸,,,又∵,∴,過作,如圖①,,,,,分別平分,,即:,,;(3)或.解:①當(dāng)在軸正半軸上時(shí),如圖②,設(shè),過作軸,軸,軸,,,解得,②當(dāng)在軸負(fù)半軸上時(shí),如圖③,解得,綜上所述:或.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等.也考查了非負(fù)數(shù)的性質(zhì)、坐標(biāo)與圖形性質(zhì)以及三角形面積公式.構(gòu)造矩形求三角形面積是解題關(guān)鍵.4.在平面直角坐標(biāo)系中,已知線段,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖1所示.(1)平移線段到線段,使點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為,若點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo);(2)平移線段到線段,使點(diǎn)在軸的正半軸上,點(diǎn)在第二象限內(nèi)(與對應(yīng),與對應(yīng)),連接如圖2所示.若表示△BCD的面積),求點(diǎn)、的坐標(biāo);(3)在(2)的條件下,在軸上是否存在一點(diǎn),使表示△PCD的面積)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.解析:(1);(2);(3)存在點(diǎn),其坐標(biāo)為或.【分析】(1)利用平移得性質(zhì)確定出平移得單位和方向;(2)根據(jù)平移得性質(zhì),設(shè)出平移單位,根據(jù)S△BCD=7(S△BCD建立方程求解,即可);(3)設(shè)出點(diǎn)P的坐標(biāo),表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對應(yīng)點(diǎn),∴設(shè),∴即線段向左平移5個(gè)單位,再向上平移4個(gè)單位得到線段∴點(diǎn)平移后的對應(yīng)點(diǎn);(2)∵點(diǎn)C在軸上,點(diǎn)D在第二象限,∴線段向左平移3個(gè)單位,再向上平移個(gè)單位,∴連接,,∴∴;(3)存在設(shè)點(diǎn),∴∵,∴∴,∴∴存在點(diǎn),其坐標(biāo)為或.【點(diǎn)睛】本題考查了線段平移的性質(zhì),解題的關(guān)鍵在利用平移的性質(zhì),得到點(diǎn)坐標(biāo)的關(guān)系、圖形面積的關(guān)系,根據(jù)面積的關(guān)系,從而求出點(diǎn)的坐標(biāo).5.如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)C在x軸的負(fù)半軸上,且AC=6.(1)直接寫出點(diǎn)C的坐標(biāo).(2)在y軸上是否存在點(diǎn)P,使得S△POB=S△ABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線CH,連接BH,點(diǎn)M在射線CH上運(yùn)動(dòng)(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.解析:(1)C(-2,0);(2)點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見解析.【分析】(1)由點(diǎn)A坐標(biāo)可得OA=4,再根據(jù)C點(diǎn)x軸負(fù)半軸上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫出點(diǎn)P的坐標(biāo);(3)先得到點(diǎn)H的坐標(biāo),再結(jié)合點(diǎn)B的坐標(biāo)可得到BH//AC,然后根據(jù)點(diǎn)M在射線CH上,分點(diǎn)M在線段CH上與不在線段CH上兩種情況分別進(jìn)行討論即可得.【詳解】(1)∵A(4,0),∴OA=4,∵C點(diǎn)x軸負(fù)半軸上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=×6×3=9,S△BOP=OP×2=OP,又∵S△POB=S△ABC,∴OP=×9=6,∴點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明如下:∵把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如圖1,當(dāng)點(diǎn)M在線段HC上時(shí),過點(diǎn)M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如圖2,當(dāng)點(diǎn)M在射線CH上但不在線段HC上時(shí),過點(diǎn)M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;綜上,∠BMA=∠MAC±∠HBM.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),三角形的面積,點(diǎn)的平移,平行線的判定與性質(zhì)等知識,綜合性較強(qiáng),正確進(jìn)行分類并準(zhǔn)確畫出圖形是解題的關(guān)鍵.6.如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點(diǎn)P,使得△ABC和△OCP的面積相等,若存在,求出點(diǎn)P坐標(biāo),若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).解析:(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)即可求得a、b的值;(2)先求得S△ABC=4,設(shè)P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點(diǎn)P的坐標(biāo);(3)①已知BD∥AC,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結(jié)論,可求得∠3+∠4=45°;過點(diǎn)E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質(zhì)可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設(shè)P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點(diǎn)E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì),熟知非負(fù)數(shù)的性質(zhì)、三角形的面積公式及平行線的性質(zhì)是解決問題的關(guān)鍵.7.如圖①,在平面直角坐標(biāo)系中,點(diǎn),,其中,是16的算術(shù)平方根,,線段由線段平移所得,并且點(diǎn)與點(diǎn)A對應(yīng),點(diǎn)與點(diǎn)對應(yīng).(1)點(diǎn)A的坐標(biāo)為;點(diǎn)的坐標(biāo)為;點(diǎn)的坐標(biāo)為;(2)如圖②,是線段上不同于的任意一點(diǎn),求證:;(3)如圖③,若點(diǎn)滿足,點(diǎn)是線段OA上一動(dòng)點(diǎn)(與點(diǎn)、A不重合),連交于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過程中,是否總成立?請說明理由.解析:(1),,;(2)證明見解析;(3)成立,理由見解析【分析】(1)根據(jù)算術(shù)平方根、立方根得、;再根據(jù)直角坐標(biāo)系、平移的性質(zhì)分析,即可得到答案;(2)根據(jù)平移的性質(zhì),得;根據(jù)平行線性質(zhì),分別推導(dǎo)得,,從而完成證明;(3)結(jié)合題意,根據(jù)平行線的性質(zhì),推導(dǎo)得、;結(jié)合(2)的結(jié)論,通過計(jì)算即可完成證明.【詳解】(1)連接∵是16的算術(shù)平方根∴∴∴∵∴∴∴∵線段由線段平移所得,并且點(diǎn)與點(diǎn)A對應(yīng),點(diǎn)與點(diǎn)對應(yīng)∴,∴故答案為:,,;(2)∵線段由線段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的結(jié)論得:,∵,∴∴∵∴∴∴在點(diǎn)運(yùn)動(dòng)的過程中,總成立.【點(diǎn)睛】本題考查了算術(shù)平方根、立方根、平行線、平移、直角坐標(biāo)系的知識;解題的關(guān)鍵是熟練掌握直角坐標(biāo)系、平移、平行線的性質(zhì),從而完成求解.8.如圖,∠EBF=50°,點(diǎn)C是∠EBF的邊BF上一點(diǎn).動(dòng)點(diǎn)A從點(diǎn)B出發(fā)在∠EBF的邊BE上,沿BE方向運(yùn)動(dòng),在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,始終有過點(diǎn)A的射線AD∥BC.(1)在動(dòng)點(diǎn)A運(yùn)動(dòng)的過程中,(填“是”或“否”)存在某一時(shí)刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當(dāng)AC⊥BC時(shí),直接寫出∠BAC的度數(shù)和此時(shí)AD與AC之間的位置關(guān)系.解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當(dāng)∠ACB=∠B時(shí),有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點(diǎn)睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.9.如圖,,直線與、分別交于點(diǎn)、,點(diǎn)在直線上,過點(diǎn)作,垂足為點(diǎn).(1)如圖1,求證:;(2)若點(diǎn)在線段上(不與、、重合),連接,和的平分線交于點(diǎn)請?jiān)趫D2中補(bǔ)全圖形,猜想并證明與的數(shù)量關(guān)系;解析:(1)證明見解析;(2)補(bǔ)圖見解析;當(dāng)點(diǎn)在上時(shí),;當(dāng)點(diǎn)在上時(shí),.【分析】(1)過點(diǎn)作,根據(jù)平行線的性質(zhì)即可求解;(2)分兩種情況:當(dāng)點(diǎn)在上,當(dāng)點(diǎn)在上,再過點(diǎn)作即可求解.【詳解】(1)證明:如圖,過點(diǎn)作,∴,∵,∴.∴.∵,∴,∴.(2)補(bǔ)全圖形如圖2、圖3,猜想:或.證明:過點(diǎn)作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當(dāng)點(diǎn)在上時(shí),∵平分,∴,∵,∴,即.如圖2,當(dāng)點(diǎn)在上時(shí),∵平分,∴.∴.即.【點(diǎn)睛】本題考查了平行線的基本性質(zhì)、角平分線的基本性質(zhì)及角的運(yùn)算,解題的關(guān)鍵是準(zhǔn)確作出平行線,找出角與角之間的數(shù)量關(guān)系.10.閱讀下面材料:小亮同學(xué)遇到這樣一個(gè)問題:已知:如圖甲,ABCD,E為AB,CD之間一點(diǎn),連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補(bǔ)充完整.證明:過點(diǎn)E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點(diǎn)A,B在直線a上,點(diǎn)C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點(diǎn)E.①如圖1,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),設(shè)∠ABC=α,∠ADC=β,請你求出∠BED的度數(shù)(用含有α,β的式子表示).解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點(diǎn)E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點(diǎn)E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點(diǎn)E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).11.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.12.直線AB∥CD,點(diǎn)P為平面內(nèi)一點(diǎn),連接AP,CP.(1)如圖①,點(diǎn)P在直線AB,CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC的度數(shù);(2)如圖②,點(diǎn)P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,點(diǎn)P在直線CD下方,當(dāng)∠BAK=∠BAP,∠DCK=∠DCP時(shí),寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.解析:(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計(jì)算即可;(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進(jìn)而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點(diǎn)K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是作出平行線構(gòu)造內(nèi)錯(cuò)角相等計(jì)算.13.如圖1,//,點(diǎn)、分別在、上,點(diǎn)在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點(diǎn)、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點(diǎn)、,且,直接寫出的值.解析:(1);(2)的值為40°;(3).【分析】(1)過點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計(jì)算可求解n值.【詳解】證明:過點(diǎn)O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點(diǎn)M作MK∥AB,過點(diǎn)N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗(yàn),符合題意,故答案為:.【點(diǎn)睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運(yùn)用平行線的性質(zhì)是解題的關(guān)鍵.14.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論