“元三維大聯(lián)考”2023級(jí)高三第一次診斷考試數(shù)學(xué)試題(含答案)_第1頁(yè)
“元三維大聯(lián)考”2023級(jí)高三第一次診斷考試數(shù)學(xué)試題(含答案)_第2頁(yè)
“元三維大聯(lián)考”2023級(jí)高三第一次診斷考試數(shù)學(xué)試題(含答案)_第3頁(yè)
“元三維大聯(lián)考”2023級(jí)高三第一次診斷考試數(shù)學(xué)試題(含答案)_第4頁(yè)
“元三維大聯(lián)考”2023級(jí)高三第一次診斷考試數(shù)學(xué)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高中2023級(jí)第一次診斷性考試

數(shù)學(xué)參考答案及評(píng)分標(biāo)準(zhǔn)

一、選擇題:本題共8小題,每小題5分,共40分.

1.C2.D3.B4.D5.A6.B7.A8.C

二、選擇題:本大題共3小題,每小題6分,共18分.全部選對(duì)的得6分,選對(duì)但不

全的得部分分,有選錯(cuò)的得0分.

9.BCD10.ACD11.AC

三、填空題:本題共3個(gè)小題,每小題5分,共15分.

12.1;13.;14.(一1,0)U(0,1)

四、解答題:本題共5小題,第15題13分,第16、17小題15分,第18、19小題17

分,共77分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

15.解:(1)∵f(x)=sin(①x+φ)的最小正周期為兀,

∴①=2,·······················································································2分

又f,即sin=一,則sin,···························4分

又兀),則,······························································5分

∴f=sin;····································································6分

(2)由題知:g=fsinsin···········8分

由x,則··················································10分

∴一sin································································12分

故g(x)的值域?yàn)椋ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ?3分

數(shù)學(xué)參考答案與評(píng)分標(biāo)準(zhǔn)第1頁(yè),共6頁(yè)

16.解:(1)當(dāng)m=2時(shí),f=x|x·········3分

故f(x)的單調(diào)遞增區(qū)間為:(—∞,—2],[—1,+∞),單調(diào)遞減區(qū)間為:[?2,?1];

·····································································································6分

(2)由題知x∈[1,2],f(x)≤2,

即對(duì)任意x∈[1,2],xx+m≤2恒成立,············································7分

x+m,即—≤x+m≤,則——x≤m≤—x,

∴xm≤x·····································································9分

xx

令g=x易知g(x)在x∈[1,2]單調(diào)遞增,故g(x)max=g(2)=1,

∴—m≥1,則m≤—1,····································································11分

令h=x易知g(x)在x∈[1,s2]單調(diào)遞減,在x∈[、i2,2]單調(diào)遞增,

故分

h(x)min=h()=2·,·······························································13

∴—m≤2、,即m≥—2、,···························································14分

綜上:—2·≤m≤—1.··································································15分

17.解:(1)因?yàn)椋寒?dāng)n≥2時(shí),an=2an—1—n+2,

所以:an—n=2[an—1—(n—1)](n≥2),·················································3分

因?yàn)椋篴1—1=2,············································································4分

所以數(shù)列{an—n}是以2為首項(xiàng),2為公比的等比數(shù)列,···························5分

n

所以:k=—1,b=0,an=2+n;·················································7分

2nn

(2)由(1)可知:bn=an—nan=4+n.2,·····································9分

設(shè)23n①

Tn=2+2.2+3.2+…+n.2

則234n+1②分

2Tn=2+2.2+3.2+…+n.2·············································10

數(shù)學(xué)參考答案與評(píng)分標(biāo)準(zhǔn)第2頁(yè),共6頁(yè)

由②①整理得:23nn+1n+1,分

?Tn=—(2+2+2+…+2)+n.2=(n—1)2+2····13

∴23nn分

Sn=4+4+4+…+4+Tn2··························15

18.解:(1)f(x)定義域?yàn)镽,且圖象關(guān)于點(diǎn)對(duì)稱,

解得:c=1;····················································································3分

(2)f/(x)=—3x2+4x+b=b—(3x2—4x),3x2—4x∈[0,7],······················4分

①b≥7時(shí),f/(x)=b—(3x2—4x)≥0,此時(shí)f(x)在[?1,0]單調(diào)遞增,

∴f(x)max=f(0)=1;········································································5分

②b≤0時(shí),f/(x)=b—(3x2—4x)≤0,此時(shí)f(x)在[?1,0]單調(diào)遞減,

∴f(x)max=f(—1)=4—b;··································································6分

,2

③0<b<7時(shí),存在x0∈(—10),使得f/(x0)=b—(3x0—4x0)=0,

且當(dāng)x∈[—1,x0)時(shí),f/(x)<0;當(dāng)x∈(x0,0]時(shí),f/(x)>0,

即f(x)在區(qū)間[—1,x0)單調(diào)遞減,在(x0,0]單調(diào)遞增,

〔4—b0<b≤3

,,

此時(shí)f(x)max=max{f(—1),f(0)}=max{1,4—b}=··················7分

{l1,3<b<7,

綜上:h(b···································································8分

當(dāng)b∈(—∞,3]時(shí),h(b)單調(diào)遞減,此時(shí)h(b)的最小值為h(3)=1;

當(dāng)b∈(3,+∞)時(shí),h(b)=1,································································9分

綜上所述:h(b)的最小值為1;··························································10分

(3)g(x)=f(x)—ax2—m=—x3—(a—2)x2+bx+1—m,

2

a,x1,x2是函數(shù)g(x)=f(x)—ax—m的三個(gè)互異零點(diǎn),即g(a)=g(x1)=g(x2),

也即g(x)=g(a)的三個(gè)根是a,x1,x2,·················································11分

代入得:—x3—(a—2)x2+bx+1—m=—a3—(a—2)a2+ba+1—m,

數(shù)學(xué)參考答案與評(píng)分標(biāo)準(zhǔn)第3頁(yè),共6頁(yè)

整理得:x3—a3+(a—2)(x2—a2)—b(x—a)=0,

∴(x—a)(x2+ax+a2)+(a—2)(x—a)(x+a)—b(x—a)=0,

22

即:(x—a)[x+(2a—2)x+2a—2a—b]=0的三根是a,x1,x2,

22

所以x1,x2必然為方程x+(2a—2)x+2a—2a—b=0的兩個(gè)相異實(shí)根,·······13分

則Δ=(2a—2)2—4(2a2—2a—b)=4(b+1—a2)>0,

所以b>a2—1,則b>—1,································································15分

又方程x2+(2a—2)x+2a2—2a—b=0兩個(gè)根都不同于a,則b≠5a2—4a,

2

∴對(duì)于b>—1,a∈(—·、,·、),且b≠5a—4a,使得a,x1,x2是函數(shù)

g(x)=f(x)—ax2—m的三個(gè)互異零點(diǎn),····················································16分

∴b的取值范圍為(—1,+∞).····························································17分

19.解:(1)f(x)不為偶函數(shù),

理由如下:若f(x)為偶函數(shù),則只需要f(x)=f(—x),

即exx3—kx2—x—1=e—xx3—kx2+x—1恒成立,···························1分

即ex—e—xx3—2x=0恒成立,

而該等式顯然對(duì)任意實(shí)數(shù)不恒成立,

故f(x)不為偶函數(shù);········································································3分

∴f’(0)=0且f’’(x)=ex—2k—x,則f’’’(x)=ex—1,

又x>0,故f’’’(x)>0,∴f’’(x)在(0,+∞)上單調(diào)遞增,······················4分

①當(dāng)k時(shí),f’’(x)>f’’(0)=1—2k≥0,對(duì)x∈(0,+∞)恒成立,

∴f’(x)在(0,+∞)上單調(diào)遞增,

∴f’(x)>f’(0)=0,

數(shù)學(xué)參考答案與評(píng)分標(biāo)準(zhǔn)第4頁(yè),共6頁(yè)

∴f(x)在(0,+∞)上單調(diào)遞增,f(x)>0,

∴f(x)在(0,+∞)上無(wú)極值點(diǎn),也沒(méi)有零點(diǎn),不滿足題意;·····················5分

②當(dāng)k時(shí),f’’(0)=1—2k<0,又f’’(x)在(0,+∞)上單調(diào)遞增,且當(dāng)x→+∞,

f’’(x)→+∞,因此3x0>0,使f’’(x0)=0,

∴當(dāng),時(shí),,單調(diào)遞減,當(dāng)時(shí),,

x∈(0x0)f’’(x)<0f’(x)x∈(x0,+∞)f’’(x)>0f’(x)

單調(diào)遞增,····························································································6分

∴f’(x0)<f’(0)=0又x→+∞時(shí),f’(x)→+∞,

∴由零點(diǎn)存在性定理知:,使,

3x1∈(x0,+∞)f’(x1)=0

∴當(dāng),時(shí),,單調(diào)遞減,當(dāng),時(shí),,

x∈(0x1)f’(x)<0f(x)x∈(x1+∞)f’(x)>0f(x)

單調(diào)遞增,

∴在,有唯一的極值點(diǎn),分

f(x)(0+∞)x1················································7

又f(x1)<f(0)=0且,當(dāng)x→+∞時(shí),f(x)→+∞,

由零點(diǎn)存在性定理知:,,使,

3x2∈(x1+∞)f(x2)=0

∴在,有唯一的零點(diǎn),分

f(x)(0+∞)x2··················································8

綜上所述:k滿足題意;···························································9分

3

(ii)要證:f<0,由f(x2)=0,

即證:f—f3<0,

即f—f3<0,······················10分

令t=x2—x1,由(i)知t>0,

即證當(dāng)t>0時(shí),f—ft3<0恒成立,······················11分

數(shù)學(xué)參考答案與評(píng)分標(biāo)準(zhǔn)第5頁(yè),共6頁(yè)

令h=f—ft3

即證:h(t)<0在t∈(0,+∞)恒成立,注意到h(0)=0,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論