版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
202X江門市中考數(shù)學幾何綜合壓軸題易錯專題一、中考數(shù)學幾何綜合壓軸題1.如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE,將△EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn)①當時,;②當時,(2)拓展探究試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情況給出證明.(3)問題解決當△EDC旋轉(zhuǎn)至A、D、E三點共線時,直接寫出線段BD的長.解析:(1)①,②.(2)無變化;理由參見解析.(3),.【分析】(1)①當α=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出的值是多少.②α=180°時,可得AB∥DE,然后根據(jù),求出的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據(jù),判斷出△ECA∽△DCB,即可求出的值是多少,進而判斷出的大小沒有變化即可.(3)根據(jù)題意,分兩種情況:①點A,D,E所在的直線和BC平行時;②點A,D,E所在的直線和BC相交時;然后分類討論,求出線段BD的長各是多少即可.【詳解】(1)①當α=0°時,∵Rt△ABC中,∠B=90°,∴AC=,∵點D、E分別是邊BC、AC的中點,∴,BD=8÷2=4,∴.②如圖1,,當α=180°時,可得AB∥DE,∵,∴(2)如圖2,,當0°≤α<360°時,的大小沒有變化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如圖3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四邊形ABCD是矩形,∴BD=AC=.②如圖4,連接BD,過點D作AC的垂線交AC于點Q,過點B作AC的垂線交AC于點P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵點D、E分別是邊BC、AC的中點,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.綜上所述,BD的長為或.2.如圖,在菱形中,,將邊繞點逆時針旋轉(zhuǎn)至,記旋轉(zhuǎn)角為.過點作于點,過點作直線于點,連接.(探索發(fā)現(xiàn))填空:當時,=.的值是(驗證猜想)當時,中的結(jié)論是否仍然成立?若成立,請僅就圖的情形進行證明;若不成立,請說明理由;(拓展應用)在的條件下,若,當是等腰直角三角形時,請直接寫出線段的長.解析:(1),;(2)當時,(1)中的結(jié)論仍然成立,理由見解析;(3)線段的長為或.【分析】當時,點B′與點C重合,,由四邊形ABCD為菱形,可求∠ABE=90°,由,可求∠ABC=60°,=30°,由DF⊥BC,DC∥AB,∠FDC=∠EBC=30°,由sin∠FDC=sin∠EBC=,可得CF=CE,可求∠CEF=∠FDC=30°即可;當時,中的結(jié)論仍然成立.先求,再證.最后證即可;連接,交于點.先求,..分兩種情況:如圖先求,再證△B′BD∽△EBF,可得,如圖先求.再證△B′BD∽△EBF,.【詳解】當時,點B′與點C重合,∵,四邊形ABCD為菱形,CD∥AB,∴⊥AB,∴∠ABE=90°,∵,AD∥BC,∴∠ABC=180°-∠BAD=180°-120°=60°,∴=∠ABE-∠ABC=90°-60°=30°,∵DF⊥BC,DC∥AB,∴DF⊥AD,∠CDA=180°-∠BAD=60°,∴∠FDC=90°-∠CDA=30°,∠FCD=90°-∠FDC=60°,∴∠FDC=∠EBC=30°,∴sin∠FDC=sin∠EBC=,∵DC=BC,∴CF=CE,∴∠CFE=∠CEF=∠FCD=30°,∴∠CEF=∠FDC=30°,∴DF=FE,∵cos∠FDC=,∴=,故答案為,.當時,中的結(jié)論仍然成立.證明:如圖,連接.,,.,...,即.,,..,線段的長為或.連接,交于點.,,,,∵DE=BE,∠DEB=90°,∴∠EDB=∠EBD=45°,.,∠B′EB=90°,,.,..分兩種情況:如圖,,∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.如圖,.∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.綜上所述,線段的長為或.【點睛】本題考查圖形旋轉(zhuǎn)變換,菱形性質(zhì),銳角三角函數(shù)值,等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),掌握圖形旋轉(zhuǎn)變換,菱形性質(zhì),銳角三角函數(shù)值,等腰直角三角形性質(zhì),三角形相似判定與性質(zhì)是解題關鍵.3.定義:如圖(1),點P沿著直線l翻折到,P到的距離叫做點P關于l的“折距”.已知,如圖(2),矩形中,,等腰直角中,,點G在上,E、B在的兩側(cè),點F為的中點,點P是射線上的動點,把沿著直線翻折到,點F的對應點為,理解:(1)當時,①若點在邊上,則點A關于的“折距”為______;②若點E關于的“折距”為12,則______.應用:(2)若,當點、、C、D能構成平行四邊形時,求出此時x的值拓展:(3)當時,設點E關于的“折距”為t,直接寫出當射線與邊有公共點時t的范圍.解析:(1)①;②3;(2);(3)【分析】(1)①根據(jù)垂直平分線的性質(zhì)和正方形的性質(zhì)計算即可;②設和相交于M,證明,即可得解;(2)根據(jù)平行四邊形的性質(zhì)求解即可;(3)當在BC上時為最小值,當在BC上時為最大值,通過相似三角形的判定與性質(zhì)求解即可;【詳解】(1)當時,①若在BC上時,則,此時四邊形為正方形,在中,,∵點A關于的“折距”為,∴點A關于的“折距”為;②由題意可知,設和相較于M,則,且,在與中,,∴,∴,又,即,解得;(2)當點、、C、D能構成平行四邊形時,則與平行且相等,在中,,又,∴,即;(3)當時,點E關于的“折距”為t,且射線與邊的公共點范圍如圖所示,當在BC上時為最小值,當在BC上時為最大值,∴,∴,∴為等腰直角三角形,E到BP的距離為,當在BC上時,,設與交于點Q,與交于點N,∴,又,∴,∴,∴,當在BC上時,∵為EG中點,如圖于M,∴,,∴,∴t的取值范圍為;【點睛】本題主要考查了四邊形綜合應用,結(jié)合勾股定理和相似三角形的判定與性質(zhì)計算是解題的關鍵.4.(問題原型)如圖,在矩形中,對角線、交于點,以為直徑作.求證:點、在上.請完成上面問題的證明,寫出完整的證明過程.(發(fā)現(xiàn)結(jié)論)矩形的四個頂點都在以該矩形對角線的交點為圓心,對角線的長為直徑的圓上.(結(jié)論應用)如圖,已知線段,以線段為對角線構造矩形.求矩形面積的最大值.(拓展延伸)如圖,在正方形中,,點、分別為邊、的中點,以線段為對角線構造矩形,矩形的邊與正方形的對角線交于、兩點,當?shù)拈L最大時,矩形的面積為_____________________解析:問題原型:見解析;結(jié)論應用:見解析;發(fā)現(xiàn)結(jié)論:2;拓展延伸:2【分析】問題原型:運用矩形對角線互相平分且相等,即可求證四點共圓;結(jié)論應用:根據(jù)結(jié)論矩形面積最大時為正方形,利用對角線的長求得正方形的面積;拓展延伸:由上一問的結(jié)論,可知四邊形為正方形,證明四邊形是正方形,繼而求得面積【詳解】解:【問題原型】∵為直徑,∴為半徑.令.∵四邊形為矩形,∴,,.∴.∴點、在上.【結(jié)論應用】連續(xù)交于點,過點作于點.∴.由【發(fā)現(xiàn)結(jié)論】可知,點在以為直徑的圓上,即,∴當即時,矩形的面積最大.∴矩形的面積最大值為.【拓展延伸】如圖,連接,設與的交點為四邊形是正方形,,點、分別為邊、的中點,四邊形是矩形由【結(jié)論應用】可知,時,矩形的面積最大為此時四邊形為正方形,此時最大,,四邊形是正方形正方形的面積為:【點睛】本題考查了矩形的性質(zhì),正方形的性質(zhì)與判定,靈活運用矩形,正方形的性質(zhì)和判定是解題的關鍵.5.定義:有一組對角互補的四邊形叫做“對補四邊形”,例如,四邊形中,若或,則四邊形是“對補四邊形”.(概念理解)(1)如圖1,四邊形是“對補四邊形”.①若,則________;②若.且時.則_______;(拓展提升)(2)如圖,四邊形是“對補四邊形”,當,且時,圖中之間的數(shù)量關系是,并證明這種關系;(類比應用)(3)如圖3,在四邊形中,平分;①求證:四邊形是“對補四邊形”;②如圖4,連接,當,且時,求的值.解析:(1)①,②;(2),理由見解析;(3)①見解析,②.【分析】(1)①根據(jù)“對補四邊形”的定義,結(jié)合,即可求得答案;②根據(jù)“對補四邊形”的定義,由,得,再利用勾股定理即可求得答案;(2)延長至點,使得,連接,根據(jù)“對補四邊形”的定義,可證明,繼而證明,從而可得結(jié)論;(3)①過點作于點,于點,則,可證,進而可證四邊形是“對補四邊形”;②設,則根據(jù),再運用建立方程,解方程即可求得.【詳解】(1),設,根據(jù)“對補四邊形”的定義,,即,解得,,,.故答案為:.②如圖1,連接,,,,在中,在中,,,,故答案為:.(2),理由如下:如圖2,延長至點,使得,連接,四邊形是“對補四邊形”,,,,,,,,即,,,,,,,,即,故答案為:.(3)①證明:如圖3,過點作于點,于點,則,平分,,,,,,,與互補,四邊形是“對補四邊形”;②由①可知四邊形是“對補四邊形”,,,,設,則,,,,,,,整理得:,解得:.在中,,.【點睛】本題考查了勾股定理,四邊形內(nèi)角和定理,全等三角形的性質(zhì)與判定,解一元二次方程,三角函數(shù)的定義等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì),準確理解新定義是解題的關鍵.6.觀察猜想:(1)如圖1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,點D與點C重合,點E在斜邊AB上,連接DE,且DE=AE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到線段DF,連接EF,則=______,sin∠ADE=________,探究證明:(2)在(1)中,如果將點D沿CA方向移動,使CD=AC,其余條件不變,如圖2,上述結(jié)論是否保持不變?若改變,請求出具體數(shù)值:若不變,請說明理由.拓展延伸(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=a,點D在邊AC的延長線上,E是AB上任意一點,連接DE.ED=nAE,將線段DE繞著點D順時針旋轉(zhuǎn)90°至點F,連接EF.求和sin∠ADE的值分別是多少?(請用含有n,a的式子表示)解析:(1);;(2)不變;(3)=;sin∠ADE=.【分析】(1)由等腰三角形的性質(zhì)和等邊三角形的判定得到∠A=∠ACE=30°,△BEC是等邊三角形,據(jù)此求得CE的長度,根據(jù)等腰直角三角形的性質(zhì)來求EF的長度,易得答案;(2)不變.理由:如圖2,過點D作DG∥BC交AB于點G,構造直角三角形:△ADG,結(jié)合含30度角的直角三角形的性質(zhì)和銳角三角函數(shù)的定義,結(jié)合方程求得答案;(3)如圖3,過點E作EG⊥AD于點G,構造直角三角形,根據(jù)銳角三角函數(shù)的定義列出方程并解答.【詳解】(1)如圖1,∵在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴∠B=60°.又CE=AE,∴∠ACE=∠A=30°,∴∠BCE=60°,∴△BEC是等邊三角形,∴BE=CE.∴AE=CE=BE.∴AD=AB=CE.又由旋轉(zhuǎn)的性質(zhì)知:FC=EC,∠FCE=90°,∴EF=CE,∴==.∵∠ADE=30°,∴sin∠ADE=.故答案是:;;(2)不變,理由:如圖2,過點D作DG∥BC交AB于點G,則△ADG是直角三角形.∵∠DAG=30°,DE=AE,設DG=x,∴∠AED=30°,AD=x,∠DEG=∠DGE=60°.∴DE=DF=x,sin∠ADE=.∵∠EDF=90°,∴EF=x.∴==.∵∠ADE=30°,∴sin∠ADE=.(3)過點E作EG⊥AD于點G,設AE=x,則DE=nx.∵∠CAB=a,∴AG=cosα?x,EG=sinα?x.∴DG==?x.∴AD=cosα?x+?x.∵∠EDF=90°,DE=DF,∴EF=DE=nx.∴==,sin∠ADE===.【點睛】本題考查了等腰三角形的性質(zhì)和等邊三角形的判定,作輔助線構造直角三角形,根據(jù)銳角三角函數(shù)的定義求解.7.綜合與實踐如圖①,在中中,,,,過點作于,將繞點逆時針方向旋轉(zhuǎn),得到,連接,,記旋轉(zhuǎn)角為.(1)問題發(fā)現(xiàn)如圖②,當時,__________;如圖③,當時,__________.(2)拓展探究試判斷:當時,的大小有無變化?請僅就圖④的情形給出證明.(3)問題解決如圖⑤,當繞點逆時針旋轉(zhuǎn)至點落在邊上時,求線段的長.解析:(1),;(2)無變化,理由詳見解析;(3).【分析】(1)首先利用勾股定理可求出AB的值,再根據(jù)三角形面積求出CD的值,再次利用勾股定理求出AD、BD的值,再分情況進一步得出的值即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出,,再證明即可得出結(jié)論;(3)過點作于,證,推出,得出,繼而得到,再根據(jù),即可得出答案.【詳解】解:(1)∵,,∴∵∴∴當時,∴當時,∴故答案為:;;(2)無變化.證明:∵在中,,,,∴.∵,∴.∵,,∴.∴,即.∴,.∴.由旋轉(zhuǎn)可知,,.∴.∵,∴.∴.∴.(3)如圖,過點作于.∵,∴.∵,,∴.∴,即.∴.∴.∴.∵,∴.【點睛】本題考查了勾股定理、三角形的面積公式、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定及性質(zhì)等多個知識點,綜合性較強,要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,會利用相似三角形的性質(zhì)解題,此題結(jié)構精巧,考查范圍廣.8.(操作)如圖①,在矩形中,為對角線上一點(不與點重合),將沿射線方向平移到的位置,的對應點為.已知(不需要證明).(探究)過圖①中的點作交延長線于點,連接,其它條件不變,如圖②.求證:.(拓展)將圖②中的沿翻折得到,連接,其它條件不變,如圖③.當最短時,若,,直接寫出的長和此時四邊形的周長.解析:探究:見解析;拓展:四邊形的周長為【分析】探究:證明四邊形EGBC是平行四邊形,推出EG=BC,利用SAS證明三角形全等即可.拓展:如圖3中,連接BD交AC于點O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.由題意四邊形AGFC是平行四邊形,推出GF=AC=,由BF=BF′,可以假設BF=x,則BG=利用相似三角形的性質(zhì),求出BH,HF′,利用勾股定理求出GF′,再利用二次函數(shù)的性質(zhì),求出GF′的值最小時BF′的值,推出BF′=此時點F′與O重合,由此即可解決問題.【詳解】解:探究:由平移,∴,即又∵,∴四邊形為平行四邊形∴∵,∴∠CBF=∠ACB,∵∴∠AEG=∠ACB,∴∠AEG=∠CBF∴.拓展:如圖3中,連接BD交AC于點O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.∵四邊形ABCD是矩形,∴∠ABC=90°,AB=4,BC=2,∴∵∴,∴由題意四邊形AGFC是平行四邊形,∴GF=AC=,∵BF=BF′,可以假設BF=x,則BG=∵AC∥GF,∴∠BOK=∠HBF′,∵∠BKO=∠F′HB=90°,∴△F′HB∽△BKO,∴∴∴∴∵>0,∴當時,GF′的值最小,此時點F′與O重合,由對折得:由矩形的性質(zhì)得:四邊形BFCF′是菱形,四邊形BFCF′的周長為,且與互相平分,由勾股定理得:【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),翻折變換,平行四邊形的判定和性質(zhì),相似三角形的判定和性質(zhì),二次函數(shù)的性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會構建二次函數(shù)解決最值問題,屬于中考壓軸題.9.(基礎鞏固)(1)如圖①,,求證:.(嘗試應用)(2)如圖②,在菱形中,,點E,F(xiàn)分別為邊上兩點,將菱形沿翻折,點A恰好落在對角線上的點P處,若,求的值.(拓展提高)(3)如圖③,在矩形中,點P是邊上一點,連接,若,求的長.解析:(1)見解析;(2);(3).【分析】(1)由證明,再根據(jù)相似三角形的判定方法解題即可;(2)由菱形的性質(zhì),得到,,繼而證明是等邊三角形,結(jié)合(1)中相似三角形對應邊成比例的性質(zhì),設,則可整理得到,據(jù)此解題;(3)在邊上取點E,F(xiàn),使得,由矩形的性質(zhì),得到,結(jié)合(1)中相似三角形對應邊成比例的性質(zhì)解題即可.【詳解】解:(1)證明:∵,∴,即,∵,∴;(2)∵四邊形是菱形,∴,∴,∴是等邊三角形,∴,由(1)得,,∴,設,則∴,可得①,②,①-②,得,∴,∴的值為;(3)如圖,在邊上取點E,F(xiàn),使得,設AB=CD=m,∵四邊形是矩形,∴,∴,=DF,,由(1)可得,,∴,∴,整理,得,解得或(舍去),∴.【點睛】本題考查相似三角形的綜合題、等邊三角形的性質(zhì)、菱形的性質(zhì)、矩形的性質(zhì)等知識,是重要考點,難度一般,掌握相關知識是解題關鍵.10.如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉(zhuǎn)過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.解析:(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關系為AG=BE;(3)3【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設,知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關鍵.11.問題背景:如圖1,在矩形中,,,點是邊的中點,過點作交于點.實驗探究:(1)在一次數(shù)學活動中,小王同學將圖1中的繞點按逆時針方向旋轉(zhuǎn),如圖2所示,得到結(jié)論:①_____;②直線與所夾銳角的度數(shù)為______.(2)小王同學繼續(xù)將繞點按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)至如圖3所示位置.請問探究(1)中的結(jié)論是否仍然成立?并說明理由.拓展延伸:在以上探究中,當旋轉(zhuǎn)至、、三點共線時,則的面積為______.解析:(1),30°;(2)成立,理由見解析;拓展延伸:或【分析】(1)通過證明,可得,,即可求解;(2)通過證明,可得,,即可求解;拓展延伸:分兩種情況討論,先求出,的長,即可求解.【詳解】解:(1)如圖1,,,,,如圖2,設與交于點,與交于點,繞點按逆時針方向旋轉(zhuǎn),,,,,又,,直線與所夾銳角的度數(shù)為,故答案為:,;(2)結(jié)論仍然成立,理由如下:如圖3,設與交于點,與交于點,將繞點按逆時針方向旋轉(zhuǎn),,又,,,,又,,直線與所夾銳角的度數(shù)為.拓展延伸:如圖4,當點在的上方時,過點作于,,,點是邊的中點,,,,,,,,、、三點共線,,,,,由(2)可得:,,,的面積;如圖5,當點在的下方時,過點作,交的延長線于,同理可求:的面積;故答案為:或.【點睛】本題是幾何變換綜合題,考查了矩形的性質(zhì),相似三角形的判定和性質(zhì),直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識,利用分類討論思想解決問題是解題的關鍵.12.如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn).當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是;②設△BDC的面積為S1,△AEC的面積為S2.則S1與S2的數(shù)量關系是.(2)猜想論證當△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.(3)拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應的BF的長解析:解:(1)①DE∥AC.②.(2)仍然成立,證明見解析;(3)或.【詳解】(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=60°.∴△ADC是等邊三角形.∴∠DCA=60°.∴∠DCA=∠CDE=60°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=2AC.又∵AD=AC∴BD=AC.∵∴.(2)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此時S△DCF1=S△BDE;過點D作DF2⊥BD,∵∠ABC=60°,F(xiàn)1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等邊三角形,∴DF1=DF2,過點D作DG⊥BC于G,∵BD=CD,∠ABC=60°,點D是角平分線上一點,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴點F2也是所求的點,∵∠ABC=60°,點D是角平分線上一點,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=,∴BF1=,BF2=BF1+F1F2=+=,故BF的長為或.13.(1)方法選擇如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.小穎認為可用截長法證明:在上截取,連接…小軍認為可用補短法證明:延長至點,使得…請你選擇一種方法證明.(2)類比探究(探究1)如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線段,,之間的數(shù)量關系,并證明你的結(jié)論.(探究2)如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關系式是______.(3)拓展猜想如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關系式是______.解析:(1)方法選擇:證明見解析;(2)【探究1】:;【探究2】;(3)拓展猜想:.【分析】(1)方法選擇:根據(jù)等邊三角形的性質(zhì)得到∠ACB=∠ABC=60°,如圖①,在BD上截取DM=AD,連接AM,由圓周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根據(jù)全等三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;(2)類比探究:如圖②,由BC是⊙O的直徑,得到∠BAC=90°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABC=∠ACB=45°,過A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根據(jù)全等三角形的性質(zhì)得到結(jié)論;【探究2】如圖③,根據(jù)圓周角定理和三角形的內(nèi)角和得到∠BAC=90°,∠ACB=60°,過A作AM⊥AD交BD于M,求得∠AMD=30°,根據(jù)直角三角形的性質(zhì)得到MD=2AD,根據(jù)相似三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;(3)如圖④,由BC是⊙O的直徑,得到∠BAC=90°,過A作AM⊥AD交BD于M,求得∠MAD=90°,根據(jù)相似三角形的性質(zhì)得到BM=CD,DM=AD,于是得到結(jié)論.【詳解】(1)方法選擇:∵,∴,如圖①,在上截取,連接,∵,∴是等邊三角形,∴,∵,∵,∴,∴,∴;(2)類比探究:如圖②,∵是的直徑,∴,∵,∴,過作交于,∵,∴是等腰直角三角形,∴,,∴,∴,∵,∴,∴,∴;[探究2]如圖③,∵若是的直徑,,∴,,過作交于,∵,∴,∴,∵,,∴,∴,∴,∴;故答案為;(3)拓展猜想:;理由:如圖④,∵若是的直徑,∴,過作交于,∴,∴,∴,∴,∴,∵,,∴,∴,∴,∴.故答案為.【點睛】本題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),正確的作出輔助線是解題的關鍵.14.(問題)如圖1,在中,,過點作直線平行于.,點在直線上移動,角的一邊始終經(jīng)過點,另一邊與交于點,研究和的數(shù)量關系.(探究發(fā)現(xiàn))(1)如圖2,某數(shù)學興趣小組運用“從特殊到一般”的數(shù)學思想,發(fā)現(xiàn)當點移動到使點與點重合時,通過推理就可以得到,請寫出證明過程;(數(shù)學思考)(2)如圖3,若點是上的任意一點(不含端點),受(1)的啟發(fā),這個小組過點作交于點,就可以證明,請完成證明過程;(拓展引申)(3)如圖4,在(1)的條件下,是邊上任意一點(不含端點),是射線上一點,且,連接與交于點,這個數(shù)學興趣小組經(jīng)過多次取點反復進行實驗,發(fā)現(xiàn)點在某一位置時的值最大.若,請你直接寫出的最大值.解析:【探究發(fā)現(xiàn)】(1)見解析;【數(shù)學思考】(2)見解析;【拓展引申】(3)時,有最大值為2.【分析】根據(jù)等腰三角形的性質(zhì)及平行的定義即可解得根據(jù)證明即可推出過點作交于點,連接,可證明,再推出即可得=,則.【詳解】證明:【探究發(fā)現(xiàn)】(1)∵∴∵∴,且∴∴即【數(shù)學思考】(2)∵∴∴,∵∴,且,∴∴【拓展引申】(3)如圖4,過點作交于點,連接,∵,∴∵∴∴∴,且∴∴∵,∴∴∴∴∴∵∴點,點,點,點四點共圓,∴∴,且∴∴∴∴∴時,有最大值為2.【點睛】本題考查等腰三角形,解題關鍵在于熟練掌握等腰三角形的性質(zhì).15.(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.①求證:;②推斷:的值為;(2)類比探究:如圖(2),在矩形中,(為常數(shù)).將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與CP之間的數(shù)量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,當時,若,,求的長.解析:(1)①證明見解析;②解:結(jié)論:.理由見解析;(2)結(jié)論:.理由見解析;(3).【解析】【分析】(1)①由正方形的性質(zhì)得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DQ.②證明四邊形DQFG是平行四邊形即可解決問題.(2)結(jié)論:如圖2中,作GM⊥AB于M.證明:△ABE∽△GMF即可解決問題.(3)如圖2-1中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)①證明:∵四邊形是正方形,∴,.∴.∵,∴.∴.∴≌,∴.②解:結(jié)論:.理由:∵,,∴,∵,∴四邊形是平行四邊形,∴,∵,∴,∴.故答案為1.(2)解:結(jié)論:.理由:如圖2中,作于.∵,∴,∴,,∴,∴∽,∴,∵,∴四邊形是矩形,∴,∴.(3)解:如圖2﹣1中,作交的延長線于.∵,,∴,∴,∴可以假設,,,∵,,∴,∴,∴或﹣1(舍棄),∴,,∵,∴,∴,,∵,∴,,∴,∴∽,∴,∴,∴,,∴,∴.【點睛】本題屬于相似形綜合題,考查了正方形的性質(zhì),矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識,解題的關鍵是正確尋找全等三角形或相似三角形解決問題,學會利用參數(shù)構建方程解決問題,屬于中考壓軸題.16.如圖1,△ABC和△DCE都是等邊三角形.探究發(fā)現(xiàn)(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請說明理由.拓展運用(2)若B、C、E三點不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長.(3)若B、C、E三點在一條直線上(如圖2),且△ABC和△DCE的邊長分別為1和2,求△ACD的面積及AD的長.解析:(1)全等,理由見解析;(2)BD=;(3)△ACD的面積為,AD=.【分析】(1)依據(jù)等式的性質(zhì)可證明∠BCD=∠ACE,然后依據(jù)SAS可證明△ACE≌△BCD;(2)由(1)知:BD=AE,利用勾股定理計算AE的長,可得BD的長;(3)過點A作AF⊥CD于F,先根據(jù)平角的定義得∠ACD=60°,利用特殊角的三角函數(shù)可得AF的長,由三角形面積公式可得△ACD的面積,最后根據(jù)勾股定理可得AD的長.【詳解】解:(1)全等,理由是:∵△ABC和△DCE都是等邊三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS);(2)如圖3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE都是等邊三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴,∴BD=;(3)如圖2,過點A作AF⊥CD于F,∵B、C、E三點在一條直線上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等邊三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,sin∠ACF=,∴AF=AC×sin∠ACF=,∴S△ACD=,∴CF=AC×cos∠ACF=1×,F(xiàn)D=CD﹣CF=,在Rt△AFD中,AD2=AF2+FD2=,∴AD=.【點睛】本題考查等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形,勾股定理等,第(3)小題巧作輔助線構造直角三角形是解題的關鍵.17.(感知)(1)如圖①,在四邊形ABCD中,∠C=∠D=90°,點E在邊CD上,∠AEB=90°,求證:=.(探究)(2)如圖②,在四邊形ABCD中,∠C=∠ADC=90°,點E在邊CD上,點F在邊AD的延長線上,∠FEG=∠AEB=90°,且=,連接BG交CD于點H.求證:BH=GH.(拓展)(3)如圖③,點E在四邊形ABCD內(nèi),∠AEB+∠DEC=180°,且=,過E作EF交AD于點F,若∠EFA=∠AEB,延長FE交BC于點G.求證:BG=CG.解析:(1)見解析(2)見解析(3)見解析【分析】(1)證得∠BEC=∠EAD,證明Rt△AED∽Rt△EBC,由相似三角形的性質(zhì)得出,則可得出結(jié)論;(2)過點G作GM⊥CD于點M,由(1)可知,證得BC=GM,證明△BCH≌△GMH(AAS),可得出結(jié)論;(3)在EG上取點M,使∠BME=∠AFE,過點C作CN∥BM,交EG的延長線于點N,則∠N=∠BMG,證明△AEF∽△EBM,由相似三角形的性質(zhì)得出,證明△DEF∽△ECN,則,得出,則BM=CN,證明△BGM≌△CGN(AAS),由全等三角形的性質(zhì)可得出結(jié)論.【詳解】(1)∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽Rt△EBC,∴;(2)如圖1,過點G作GM⊥CD于點M,同(1)的理由可知:,∵,,∴,∴CB=GM,在△BCH和△GMH中,,∴△BCH≌△GMH(AAS),∴BH=GH;(3)證明:如圖2,在EG上取點M,使∠BME=∠AFE,過點C作CN∥BM,交EG的延長線于點N,則∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,在△BGM和△CGN中,,∴△BGM≌△CGN(AAS),∴BG=CG.【點睛】本題考查了直角三角形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),平行線的性質(zhì)等知識,熟練掌握相似三角形的判定與性質(zhì)是解題的關鍵.18.在我們學習過的數(shù)學教科書中,有一個數(shù)學活動,若身旁沒有量角器或三角尺,又需要作等大小的角,可以采用如下方法:操作感知:第一步:對折矩形紙片,使與重合,得到折痕,把紙片展開(如圖13-1).第二步:再一次折疊紙片,使點落在上,并使折痕經(jīng)過點,得到折痕,同時得到線段(如圖13-2).猜想論證:(1)若延長交于點,如圖13-3所示,試判定的形狀,并證明你的結(jié)論.拓展探究:(2)在圖13-3中,若,當滿足什么關系時,才能在矩形紙片中剪出符(1)中的等邊三角形?解析:(1)是等邊三角形,理由見解析;(2),理由見解析【分析】(1)連接,由折疊性質(zhì)可得是等邊三角形,,,然后可得到,即可判定是等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 耐火制品浸漬工誠信道德模擬考核試卷含答案
- 2025四川資陽市樂至縣招考社區(qū)專職工作者30人備考題庫附答案
- 護工崗前設備考核試卷含答案
- 合成氨氣體壓縮工誠信道德水平考核試卷含答案
- 飛機槳葉型面仿形工風險評估與管理考核試卷含答案
- 意匠紋版工崗前技術操作考核試卷含答案
- 手風琴校音工安全文化模擬考核試卷含答案
- 2024年淮北師范大學輔導員招聘備考題庫附答案
- 2024年象州縣招教考試備考題庫附答案
- 2024年陽西縣幼兒園教師招教考試備考題庫附答案
- 半導體產(chǎn)業(yè)人才供需洞察報告 202511-獵聘
- 電梯救援安全培訓課件
- 2025年青島市國企社會招聘筆試及答案
- 2026屆江西省撫州市臨川區(qū)第一中學高二上數(shù)學期末考試模擬試題含解析
- 民航華東地區(qū)管理局機關服務中心2025年公開招聘工作人員考試題庫必考題
- 云南省大理州2024-2025學年七年級上學期期末考試數(shù)學試卷(含解析)
- 物業(yè)管理法律法規(guī)與實務操作
- 高壓避雷器課件
- 體檢中心收費與財務一體化管理方案
- 四川省內(nèi)江市2024-2025學年高二上學期期末檢測化學試題
- 廣東省深圳市龍崗區(qū)2024-2025學年二年級上學期學科素養(yǎng)期末綜合數(shù)學試卷(含答案)
評論
0/150
提交評論