黑龍江省林口林業(yè)局中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末預(yù)測試題含解析_第1頁
黑龍江省林口林業(yè)局中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末預(yù)測試題含解析_第2頁
黑龍江省林口林業(yè)局中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末預(yù)測試題含解析_第3頁
黑龍江省林口林業(yè)局中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末預(yù)測試題含解析_第4頁
黑龍江省林口林業(yè)局中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省林口林業(yè)局中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末預(yù)測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,已知最底層正方體的棱長為a,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn),依此方法一直繼續(xù)下去,則所有這些正方體的體積之和將趨近于()A. B.C. D.2.已知長方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.3.元朝著名的數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩:“我有一壺酒,攜著游春走.遇店添一倍,逢友飲一斗.”基于此情景,設(shè)計(jì)了如圖所示的程序框圖,若輸入的,輸出的,則判斷框中可以填()A. B.C. D.4.過點(diǎn)A(3,3)且垂直于直線的直線方程為A. B.C. D.5.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點(diǎn),則與平面所成角的余弦值為()A. B.C. D.6.下列命題中,真命題的個(gè)數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點(diǎn)距點(diǎn)最近的距離為;A.個(gè) B.個(gè)C.個(gè) D.個(gè)7.直線分別交坐標(biāo)軸于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),三角形OAB的內(nèi)切圓上有動(dòng)點(diǎn)P,則的最小值為()A.16 B.18C.20 D.228.三等分角是“古希臘三大幾何問題”之一,數(shù)學(xué)家帕普斯巧妙地利用圓弧和雙曲線解決了這個(gè)問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個(gè)三等分點(diǎn),以A為左焦點(diǎn),B,C為頂點(diǎn)作雙曲線T.設(shè)雙曲線T與弧的交點(diǎn)為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.9.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C D.10.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時(shí)認(rèn)識(shí)到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時(shí)它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)的導(dǎo)函數(shù),若,且對,,且總有,則下列選項(xiàng)正確的是()A. B.C. D.11.從0,1,2,3,4,5這六個(gè)數(shù)字中,任取兩個(gè)不同數(shù)字構(gòu)成平面直角坐標(biāo)系內(nèi)點(diǎn)的橫、縱坐標(biāo),其中不在軸上的點(diǎn)有()A.36個(gè) B.30個(gè)C.25個(gè) D.20個(gè)12.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-4二、填空題:本題共4小題,每小題5分,共20分。13.已知為拋物線上的動(dòng)點(diǎn),,,則的最小值為________.14.拋物線的準(zhǔn)線方程為_______.15.在中,,是線段上的點(diǎn),,若的面積為,當(dāng)取到最大值時(shí),___________.16.曲線的一條切線的斜率為,該切線的方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知命題:方程有實(shí)數(shù)解,命題:,.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若為假命題,且為真命題,求實(shí)數(shù)的取值范圍.18.(12分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2025年中國的汽車總銷量將達(dá)到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺(tái)16200元,第一年每臺(tái)設(shè)備的維修保養(yǎng)費(fèi)用為1100元,以后每年增加400元,每臺(tái)充電樁每年可給公司收益8100元(1)每臺(tái)充電樁第幾年開始獲利?(2)每臺(tái)充電樁在第幾年時(shí),年平均利潤最大19.(12分)設(shè)數(shù)列的前n項(xiàng)和為,且,數(shù)列(1)求和的通項(xiàng)公式;(2)設(shè)數(shù)列的前n項(xiàng)和為,證明:20.(12分)已知橢圓C:的長軸長為4,離心率e是方程的一根(1)求橢圓C的方程;(2)已知O是坐標(biāo)原點(diǎn),斜率為k的直線l經(jīng)過點(diǎn),已知直線l與橢圓C相交于點(diǎn)A,B,求面積的最大值21.(12分)已知某中學(xué)高二物化生組合學(xué)生的數(shù)學(xué)與物理的水平測試成績抽樣統(tǒng)計(jì)如下表:若抽取了名學(xué)生,成績分為A(優(yōu)秀),B(良好),C(及格)三個(gè)等級,設(shè),分別表示數(shù)學(xué)成績與物理成績,例如:表中物理成績?yōu)锳等級的共有(人),數(shù)學(xué)成績?yōu)锽等級且物理成績?yōu)镃等級的共有8人,已知與均為A等級的概率是0.07(1)設(shè)在該樣本中,數(shù)學(xué)成績的優(yōu)秀率是30%,求,的值;(2)已知,,求數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)多的概率22.(10分)(1)已知集合,.:,:,并且是的充分條件,求實(shí)數(shù)的取值范圍(2)已知:,,:,,若為假命題,求實(shí)數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由已知可判斷出所有這些正方體的體積構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,然后求和可得答案.【詳解】最底層上面第一個(gè)正方體的棱長為,其體積為,上面第二個(gè)正方體的棱長為,其體積為,上面第三個(gè)正方體的棱長為,其體積為,所有這些正方體的體積構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,其前項(xiàng)和為,當(dāng),,所以所有這些正方體的體積之和將趨近于.故選:D.2、A【解析】建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量為,易知平面的一個(gè)法向量為,由求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個(gè)法向量為,則,即,令,則,易知平面的一個(gè)法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A3、D【解析】根據(jù)程序框圖的算法功能,模擬程序運(yùn)行即可推理判斷作答.【詳解】由程序框圖知,直到型循環(huán)結(jié)構(gòu),先執(zhí)行循環(huán)體,條件不滿足,繼續(xù)執(zhí)行循環(huán)體,條件滿足跳出循環(huán)體,則有:當(dāng)?shù)谝淮螆?zhí)行循環(huán)體時(shí),,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當(dāng)?shù)诙螆?zhí)行循環(huán)體時(shí),,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當(dāng)?shù)谌螆?zhí)行循環(huán)體時(shí),,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當(dāng)?shù)谒拇螆?zhí)行循環(huán)體時(shí),,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當(dāng)?shù)谖宕螆?zhí)行循環(huán)體時(shí),,,條件滿足,跳出循環(huán)體,輸出,于是得判斷框中的條件為:,所以判斷框中可以填:.故選:D4、D【解析】過點(diǎn)A(3,3)且垂直于直線的直線斜率為,代入過的點(diǎn)得到.故答案為D.5、C【解析】以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PB與平面PEF所成角的正弦值.【詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點(diǎn),∴以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面PEF的法向量,則,取,得,設(shè)PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.6、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關(guān)系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標(biāo)表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對于(1),若曲線為雙曲線,則,即,解得或,因?yàn)榛?,因此,是為雙曲線的充分不必要條件,(1)錯(cuò);對于(2),若,則或,(2)錯(cuò);對于(3),,則,(3)對;對于(4),設(shè)點(diǎn)為橢圓上一點(diǎn),則且,則點(diǎn)到點(diǎn)的距離為,(4)錯(cuò).故選:A.7、B【解析】由題意,求出內(nèi)切圓的半徑和圓心坐標(biāo),設(shè),則,由表示內(nèi)切圓上的動(dòng)點(diǎn)P到定點(diǎn)的距離的平方,從而即可求解最小值.【詳解】解:因?yàn)橹本€分別交坐標(biāo)軸于A,B兩點(diǎn),所以設(shè),則,因?yàn)?,所以三角形OAB的內(nèi)切圓半徑,內(nèi)切圓圓心為,所以內(nèi)切圓的方程為,設(shè),則,因?yàn)楸硎緝?nèi)切圓上的動(dòng)點(diǎn)P到定點(diǎn)的距離的平方,且在內(nèi)切圓內(nèi),所以,所以,,即的最小值為18,故選:B.8、C【解析】由題設(shè)寫出雙曲線的方程,對比系數(shù),求出即可獲解【詳解】由題知所以雙曲線的方程為又由題設(shè)的方程為,所以,即設(shè)AB的中點(diǎn)為,則由.所以,即圓的半徑為2故選:C9、C【解析】根據(jù)函數(shù)的定義域和特殊點(diǎn),判斷出正確選項(xiàng).【詳解】由,解得,也即函數(shù)的定義域?yàn)?,由此排除A,B選項(xiàng).當(dāng)時(shí),,由此排除D選項(xiàng).所以正確的為C選項(xiàng).故選:C【點(diǎn)睛】本小題主要考查函數(shù)圖像識(shí)別,屬于基礎(chǔ)題.10、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項(xiàng).【詳解】由,得在上單調(diào)遞增,因?yàn)?,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點(diǎn)處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點(diǎn)與點(diǎn)連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點(diǎn)睛】本題考查以數(shù)學(xué)文化為背景,導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.11、C【解析】根據(jù)點(diǎn)不在y軸上,分2類根據(jù)分類加法計(jì)數(shù)原理求解.【詳解】因?yàn)辄c(diǎn)不在軸上,所以點(diǎn)的橫坐標(biāo)不能為0,分兩類考慮,第一類含0且為點(diǎn)的縱坐標(biāo),共有個(gè)點(diǎn),第二類坐標(biāo)不含0的點(diǎn),共有個(gè)點(diǎn),根據(jù)分類加法計(jì)數(shù)原理可得共有個(gè)點(diǎn).故選:C12、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時(shí),取極大值,極大值是時(shí),函數(shù)取極小值,極小值是,而時(shí),時(shí),,故函數(shù)的最小值為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據(jù)拋物線的定義把的長轉(zhuǎn)化為到準(zhǔn)線的距離為,進(jìn)而數(shù)形結(jié)合求出最小值.【詳解】易知為拋物線的焦點(diǎn),設(shè)到準(zhǔn)線的距離為,則,而的最小值為到準(zhǔn)線的距離,故的最小值為.故答案為:614、【解析】由拋物線的標(biāo)準(zhǔn)方程為x2=y,得拋物線是焦點(diǎn)在y軸正半軸的拋物線,2p=1,∴其準(zhǔn)線方程是y=,故答案為15、【解析】由三角形面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時(shí),取得最大值,,,由余弦定理得,解得.故答案為【點(diǎn)睛】本題考查余弦定理解三角形,同時(shí)也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時(shí),需要結(jié)合已知條件得出定值條件,同時(shí)要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.16、【解析】使用導(dǎo)數(shù)運(yùn)算公式求得切點(diǎn)處的導(dǎo)數(shù)值,并根據(jù)導(dǎo)數(shù)的幾何意義等于切線斜率求得切點(diǎn)的橫坐標(biāo),進(jìn)而得到切點(diǎn)坐標(biāo),然后利用點(diǎn)斜式求出切線方程即可.【詳解】的導(dǎo)數(shù)為,設(shè)切點(diǎn)為,可得,解得,即有切點(diǎn),則切線的方程為,即.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的加法運(yùn)算,導(dǎo)數(shù)的幾何意義,和求切線方程,難度不大,關(guān)鍵是正確的使用導(dǎo)數(shù)運(yùn)算公式求得切點(diǎn)處的導(dǎo)數(shù)值,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)【解析】(1)由方程有實(shí)數(shù)根則,可求出實(shí)數(shù)的取值范圍.(2)為真命題,即從而得出的取值范圍,由(1)可得出為假命題時(shí)實(shí)數(shù)的取值范圍.即可得出答案.【詳解】解:(1)方程有實(shí)數(shù)解得,,解之得或;(2)為假命題,則,為真命題時(shí),,,則故.故為假命題且為真命題時(shí),.【點(diǎn)睛】本題考查命題為真時(shí)求參數(shù)的范圍和兩個(gè)命題同時(shí)滿足條件時(shí),求參數(shù)的范圍,屬于基礎(chǔ)題.18、(1)公司從第3年開始獲利;(2)第9年時(shí)每臺(tái)充電樁年平均利潤最大3600元【解析】(1)判斷已知條件是等差數(shù)列,然后求解利潤的表達(dá)式,推出表達(dá)式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養(yǎng)費(fèi)用是以1100為首項(xiàng),400為公差的等差數(shù)列,設(shè)第n年時(shí)累計(jì)利潤為f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),開始獲利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司從第3年開始獲利;(2)每臺(tái)充電樁年平均利潤為當(dāng)且僅當(dāng),即n=9時(shí),等號成立即在第9年時(shí)每臺(tái)充電樁年平均利潤最大3600元【點(diǎn)睛】本題考查數(shù)列與函數(shù)的實(shí)際應(yīng)用,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題19、(1),(2)證明見解析【解析】(1)根據(jù)可得,從而可得;(2)利用錯(cuò)位相減法可得,從而可得,又,即可證明不等式成立.【小問1詳解】解:∵,∴當(dāng)時(shí),,當(dāng)時(shí),,∴,經(jīng)檢驗(yàn),也符合,∴,;【小問2詳解】證明:因?yàn)?,∴,∴∴,又∵,∴,所?0、(1);(2).【解析】(1)待定系數(shù)法求橢圓的方程;(2)設(shè)直線的方程為,,,用“設(shè)而不求法”表示出三角形OAB的面積.令轉(zhuǎn)化為關(guān)于t的函數(shù),利用函數(shù)求最值.【詳解】(1)依題意得:,∴.方程的根為或.∵橢圓的離心率,∴,∴∴∴橢圓方程為.(2)設(shè)直線的方程為,,由,得,則,點(diǎn)到直線的距離為,.令,則..∵在單調(diào)遞增,∴時(shí).有最小值3.此時(shí)有最大值.∴面積的最大值為.21、(1),(2)【解析】(1)根據(jù)與均為A等級的概率是0.07,求得值,再根據(jù)數(shù)學(xué)成績的優(yōu)秀率是30%求得值,最后利用抽取的總?cè)藬?shù)求出值即可;(2)根據(jù),,,寫出滿足條件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小問1詳解】由題意知,解得,,解得,由已知得,解得.【小問2詳解】由,,,可知,則試驗(yàn)的樣本空間,共9個(gè)樣本點(diǎn)其中包含的樣本點(diǎn)有共4個(gè),故所求概率22、(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論