安徽省定遠二中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第1頁
安徽省定遠二中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第2頁
安徽省定遠二中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第3頁
安徽省定遠二中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第4頁
安徽省定遠二中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省定遠二中2026屆高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)2.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.3.有一個圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點,則關(guān)于下列命題:①鉛垂的側(cè)面積為150cm2;②一只螞蟻從P點出發(fā)沿鉛垂側(cè)面爬行一周、最終又回到P點的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯誤C.①錯誤、②正確4.已知等差數(shù)列且,則數(shù)列的前13項之和為()A.26 B.39C.104 D.525.已知中心在坐標原點,焦點在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.6.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.7.已知,則()A. B.C. D.8.在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做“等和數(shù)列”,這個數(shù)叫做數(shù)列的公和.已知等和數(shù)列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣39.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件10.在等差數(shù)列中,為其前項和,若.則()A. B.C. D.11.設(shè)是定義在R上的可導(dǎo)函數(shù),若(為常數(shù)),則()A. B.C. D.12.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與曲線有且僅有一個公共點.則b的取值范圍是__________14.若不等式的解集是,則的值是___________.15.已知O為坐標原點,,是拋物線上的兩點,且滿足,則______;若OM垂直AB于點M,且為定值,則點Q的坐標為__________.16.定義在上的函數(shù)滿足,且對任意都有,則不等式的解集為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列前n項和為,且(1)求通項公式;(2)記,求數(shù)列的前n項和18.(12分)如圖,四棱錐中,底面為矩形,底面,,點是棱的中點(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值19.(12分)已知橢圓上的點到橢圓焦點的最大距離為3,最小距離為1(1)求橢圓的標準方程;(2)已知,分別是橢圓的左右頂點,是橢圓上異于,的任意一點,直線,分別交軸于點,,求的值20.(12分)某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學(xué)生進行面試,則每組應(yīng)各抽多少名學(xué)生?(3)在(2)的前提下,從抽到6名學(xué)生中再隨機抽取2名被甲考官面試,求這2名學(xué)生來自同一組的概率.21.(12分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側(cè)面積;(2)求平面SCD與平面SAB的夾角的余弦值.22.(10分)已知正項數(shù)列的前項和滿足(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)確定平面的條件可對每一個選項進行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C2、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C3、C【解析】根據(jù)圓錐的側(cè)面展開圖為扇形,由扇形的面積公式計算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側(cè)面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯誤.將其側(cè)面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C4、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡已知條件可得的值,再由等差數(shù)列前項和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項之和為,故選:A5、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點在軸上,所以漸近線方程為:,又因為雙曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.6、B【解析】設(shè),根據(jù)線面垂直的性質(zhì)得,,,,根據(jù)向量數(shù)量積的定義逐一計算,比較可得答案.【詳解】解:設(shè),因為平面,所以,,,,又底面是正方形,所以,,對于A,;對于B,;對于C,;對于D,,所以數(shù)量積最大的是,故選:B.7、C【解析】取中間值,化成同底利用單調(diào)性比較可得.【詳解】,,,故,故選:C8、C【解析】利用已知即可求得,再利用已知可得:,問題得解【詳解】解:根據(jù)題意,等和數(shù)列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【點睛】本題主要考查了新概念知識,考查理解能力及轉(zhuǎn)化能力,還考查了數(shù)列的周期性,屬于中檔題9、B【解析】根據(jù)垂直關(guān)系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.10、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.11、C【解析】根據(jù)導(dǎo)數(shù)的定義即可求解.【詳解】.故選:C.12、C【解析】由題設(shè)寫出的中垂線,求其與的交點即得圓心坐標,再應(yīng)用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、或.【解析】根據(jù)曲線方程得曲線的軌跡是個半圓,數(shù)形結(jié)合分析得兩種情況:(1)直線與半圓相切有一個交點;(2)直線與半圓相交于一個點,綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個公共點有兩種情況:(1)直線與半圓相切,根據(jù),所以,結(jié)合圖像可得;(2)直線與半圓的上半部分相交于一個交點,由圖可知.故答案為:或.【點睛】方法點睛:處理直線與圓位置關(guān)系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結(jié)合進行分析.14、【解析】利用和是方程的兩根,再利用根與系數(shù)的關(guān)系即可求出和的值,即可得的值.【詳解】由題意可得:方程的兩根是和,由根與系數(shù)的關(guān)系可得:,所以,所以,故答案為:15、①.-24②.【解析】由拋物線的方程及數(shù)量積的運算可求出,設(shè)直線AB的方程為,聯(lián)立拋物線方程,由根與系數(shù)的關(guān)系可求出,由圓的定義求出圓心即可.【詳解】由,即解得或(舍去).設(shè)直線AB的方程為.由,消去x并整理得,.又,,直線AB恒過定點N(6,0),OM垂直AB于點M,點M在以O(shè)N為直徑圓上.|MQ|為定值,點Q為該圓的圓心,又即Q(3,0).故答案為:;16、【解析】利用構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得不等式的解集.【詳解】構(gòu)造函數(shù),,所以在上遞減,由,得,即,所以,即等式的解集為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式.(2)求得,利用裂項相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項公式;【小問2詳解】由(1)得:,所以,所以.18、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因為平面,四邊形為矩形,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因為,因此,平面.所以,平面的一個法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.19、(1);(2)-1.【解析】(1)根據(jù)橢圓的性質(zhì)進行求解即可;(2)根據(jù)直線的方程,結(jié)合平面向量數(shù)量積的坐標表示公式進行求解即可.【小問1詳解】由題意得,,,所以,橢圓.【小問2詳解】由題意可知,,設(shè),則,直線,直線分別令得,,,.【點睛】關(guān)鍵點睛:運用平面向量數(shù)量積的坐標表示公式進行求解是解題的關(guān)鍵.20、(1),,(2)第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個組共有60人,從而利用分層抽樣抽樣方法抽取6名學(xué)生第三組應(yīng)抽3人,第四組應(yīng)抽2人,第五組應(yīng)抽1人;(3)記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,利用列舉法結(jié)合概率公式得出答案.【小問1詳解】由題意得,,【小問2詳解】三個組共有60人,所以第三組應(yīng)抽人,第四組應(yīng)抽人,第五組應(yīng)抽人.【小問3詳解】記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,從這6人中隨機抽取2人,基本事件包含,共15個基本事件.其中2人來自同一組的情況有,共4種.所以,2人來自同一組的概率為.21、(1)(2)【解析】(1)根據(jù)垂直關(guān)系依次求解每個側(cè)面三角形邊長和面積即可得解;(2)建立空間直角坐標系,利用向量法求解.小問1詳解】由題可得:,則,SA⊥底面ABCD,所以,S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論