版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西桂林市龍勝中學2025年數(shù)學高二第一學期期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記為等差數(shù)列的前n項和,有下列四個等式,甲:;乙:;丙:;?。海绻挥幸粋€等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁2.已知直線l與圓交于A,B兩點,點滿足,若AB的中點為M,則的最大值為()A. B.C. D.3.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.4.已知中,內(nèi)角所對的邊分別,若,,,則()A. B.C. D.5.函數(shù)的導數(shù)記為,則等于()A. B.C. D.6.已知集合,,則A. B.C. D.7.已知函數(shù),則曲線在點處的切線與坐標軸圍成的三角形的面積是()A B.C. D.8.如圖,已知雙曲線的左右焦點分別為、,,是雙曲線右支上的一點,,直線與軸交于點,的內(nèi)切圓半徑為,則雙曲線的離心率是()A. B.C. D.9.橢圓的焦點坐標為()A. B.C. D.10.已知圓:,點是直線:上的動點,過點引圓的兩條切線、,其中、為切點,則直線經(jīng)過定點()A. B.C. D.11.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.1612.變量,之間的一組相關(guān)數(shù)據(jù)如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線恒過定點,則定點坐標為________14.某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為____________.15.經(jīng)過點,的直線的傾斜角為___________.16.點到直線的距離為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的中心在原點,對稱軸為坐標軸且焦點在軸上,拋物線:,若拋物線的焦點在橢圓上,且橢圓的離心率為.(1)求橢圓的方程;(2)已知斜率存在且不為零的直線滿足:與橢圓相交于不同兩點、,與直線相交于點.若橢圓上一動點滿足:,,且存在點,使得恒為定值,求的值.18.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.19.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當時,已知是假命題,是真命題,求x的取值范圍.20.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關(guān)系,并說明理由;(2)若過點的直線l與圓C相切,求直線l的方程.21.(12分)如圖,在四棱錐中,平面平面,,,,,(Ⅰ)求證:;(Ⅱ)求二面角的余弦值;(Ⅲ)若點在棱上,且平面,求線段的長22.(10分)已知,以點為圓心圓被軸截得的弦長為.(1)求圓的方程;(2)若過點的直線與圓相切,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分別假設甲、乙、丙、丁不成立,驗證得到答案【詳解】設數(shù)列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.2、A【解析】設,,則、,由點在圓上可得,再由向量垂直的坐標表示可得,進而可得M的軌跡為圓,即可求的最大值.【詳解】設,中點,則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點睛】關(guān)鍵點點睛:由點圓位置、中點坐標公式及向量垂直的坐標表示得到關(guān)于的軌跡方程.3、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結(jié)合焦距為2和,求得,即可得解.【詳解】解:因為雙曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因為,所以,所以,所以雙曲線的方程為.故選:B.4、B【解析】利用正弦定理可直接求得結(jié)果.【詳解】在中,由正弦定理得:.故選:B.5、D【解析】求導后代入即可.【詳解】,.故選:D.6、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點睛】本題主要考查了集合的交集運算,屬于基礎題.7、B【解析】根據(jù)導數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B8、D【解析】根據(jù)給定條件結(jié)合直角三角形內(nèi)切圓半徑與邊長的關(guān)系求出雙曲線實半軸長a,再利用離心率公式計算作答.【詳解】依題意,,的內(nèi)切圓半徑,由直角三角形內(nèi)切圓性質(zhì)知:,由雙曲線對稱性知,,于是得,即,又雙曲線半焦距c=2,所以雙曲線的離心率.故選:D【點睛】結(jié)論點睛:二直角邊長為a,b,斜邊長為c的直角三角形內(nèi)切圓半徑.9、B【解析】根據(jù)方程可得,且焦點軸上,然后可得答案.【詳解】由橢圓的方程可得,且焦點在軸上,所以,即,故焦點坐標為故選:B10、D【解析】根據(jù)圓的切線性質(zhì),結(jié)合圓的標準方程、圓與圓的位置關(guān)系進行求解即可.【詳解】因為、是圓的兩條切線,所以,因此點、在以為直徑的圓上,因為點是直線:上的動點,所以設,點,因此的中點的橫坐標為:,縱坐標為:,,因此以為直徑的圓的標準方程為:,而圓:,得:,即為直線的方程,由,所以直線經(jīng)過定點,故選:D【點睛】關(guān)鍵點睛:由圓的切線性質(zhì)得到點、在以為直徑的圓上,運用圓與圓的位置關(guān)系進行求解是解題的關(guān)鍵.11、C【解析】根據(jù)“中國剩余定理”,進而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個判斷框,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)為2.輸出的i值為13.故選:C.12、C【解析】本題先求樣本點中心,再利用線性回歸方程過樣本點中心直接求解即可.【詳解】解:,,所以樣本點中心:,線性回歸方程過樣本點中心,則解得:,故選:C【點睛】本題考查線性回歸方程過樣本點中心,是簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解方程組可求得定點坐標.【詳解】直線方程可化為,由,可得.故直線恒過定點.故答案為:.14、160【解析】∵某個年級共有980人,要從中抽取280人,∴抽取比例為,∴此樣本中男生人數(shù)為,故答案為160.考點:本題考查了分層抽樣的應用點評:掌握分層抽樣的概念是解決此類問題的關(guān)鍵,屬基礎題15、【解析】根據(jù)兩點間斜率公式得到斜率,再根據(jù)斜率確定傾斜角大小即可.【詳解】根據(jù)兩點間斜率公式得:,所以直線的傾斜角為:.故答案為:16、【解析】應用點線距離公式求點線距離.【詳解】由題設,點到距離為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求得橢圓的,代入公式即可求得橢圓的方程;(2)以設而不求的方法得到兩根和,再由條件,得到四邊形為平行四邊形,并以向量方式進行等價轉(zhuǎn)化,再與恒為定值進行聯(lián)系,即可求得的值.【小問1詳解】由條件可設橢圓:,因為拋物線:的焦點為,所以,解得因為橢圓離心率為,所以,則,故橢圓的方程為【小問2詳解】設直線:,,,把直線的方程代入橢圓的方程,可得,所以,因為,,所以四邊形為平行四邊形,得,即,得由在橢圓上可得,,即因為,又所以,所以將代入得,所以,即.【點睛】數(shù)形結(jié)合是數(shù)學解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。18、(1)單調(diào)遞增區(qū)間為;單調(diào)減區(qū)間為和;(2);.【解析】(1)求出導函數(shù),令,求出單調(diào)遞增區(qū)間;令,求出單調(diào)遞減區(qū)間.(2)求出函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為和;2由在單調(diào)遞減,在單調(diào)遞增,所以,而,,故最大值是.19、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問2詳解】解:當時,有,由題意知,p、q一真一假,當p真q假時,,當p假q真時,,綜上,x的取值范圍為20、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關(guān)系即可判斷結(jié)果;(2)討論,當直線l的斜率不存在時則方程為,當直線l的斜率存在時,設其方程為,利用圓心到直線的距離等于半徑計算即可得出結(jié)果.【小問1詳解】把圓M的方程化成標準方程,得,圓心為,半徑.圓C的圓心為,半徑,因為,所以圓C與圓M相交,【小問2詳解】①當直線l的斜率不存在時,直線l的方程為到圓心C距離為2,滿足題意;②當直線l的斜率存在時,設其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.21、(Ⅰ)見解析.(Ⅱ).(Ⅲ).【解析】第一問根據(jù)面面垂直的性質(zhì)和線面垂直的性質(zhì)得出線線垂直的結(jié)論,注意在書寫的時候條件不要丟就行;第二問建立空間直角坐標系,利用法向量所成角的余弦值來求得二面角的余弦值;第三問利用向量共線的關(guān)系,得出向量的坐標,根據(jù)線面平行得出向量垂直,利用其數(shù)量積等于零,求得結(jié)果.(Ⅰ)證明:因為平面⊥平面,且平面平面,因為⊥,且平面所以⊥平面因為平面,所以⊥.(Ⅱ)解:在△中,因為,,,所以,所以⊥.所以,建立空間直角坐標系,如圖所示所以,,,,,,.易知平面的一個法向量為.設平面的一個法向量為,則,即,令,則.設二面角的平面角為,可知為銳角,則,即二面角的余弦值為(Ⅲ)解:因為點在棱,所以,因為,所以,.又因為平面,為平面的一個法向量,所以,即,所以所以,所以.22、(1)(2)或【解析】(1)根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年阿片類中毒解毒藥項目建議書
- 2025年多導生理記錄儀(8導以上)項目發(fā)展計劃
- 遼寧省2025秋九年級英語全冊Unit10You'resupposedtoshakehands課時3SectionA(GrammarFocus-4c)課件新版人教新目標版
- 2025年透皮吸收材料合作協(xié)議書
- 2025年速釋制劑材料項目發(fā)展計劃
- 2025年軟泡聚醚項目建議書
- 老年常見疾病的護理與預防
- 如何塑造白嫩肌膚
- 先心病患兒常見癥狀護理
- 機器人基礎與實踐 課件 第7、8章 機器人環(huán)境識別理論與實踐、機器人定位及地圖構(gòu)建理論與實踐
- 財務安全生產(chǎn)費培訓課件
- 鋼結(jié)構(gòu)施工臨時支撐方案
- 鋼結(jié)構(gòu)樓梯安裝施工方案
- 趣味運動會元旦活動方案
- ??稻W(wǎng)絡監(jiān)控系統(tǒng)的技術(shù)方案
- 村書記就職發(fā)言稿
- 2025北京市通州區(qū)不動產(chǎn)登記中心協(xié)辦員招聘1人模擬試卷及答案詳解(典優(yōu))
- 木工加工區(qū)施工方案
- 農(nóng)村勞務經(jīng)紀人培訓課件
- 郵儲銀行二級支行長面試題庫及答案
- 數(shù)據(jù)中心制冷機組維護標準
評論
0/150
提交評論