新疆昌吉市第九中學2025-2026學年數(shù)學高二第一學期期末達標檢測試題含解析_第1頁
新疆昌吉市第九中學2025-2026學年數(shù)學高二第一學期期末達標檢測試題含解析_第2頁
新疆昌吉市第九中學2025-2026學年數(shù)學高二第一學期期末達標檢測試題含解析_第3頁
新疆昌吉市第九中學2025-2026學年數(shù)學高二第一學期期末達標檢測試題含解析_第4頁
新疆昌吉市第九中學2025-2026學年數(shù)學高二第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆昌吉市第九中學2025-2026學年數(shù)學高二第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知:,直線l:,M為直線l上的動點,過點M作的切線MA,MB,切點為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.42.集合,,則()A. B.C. D.3.在等差數(shù)列中,,則等于A.2 B.18C.4 D.94.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.5.過雙曲線的右焦點F作一條漸近線的垂線,垂足為M,且FM的中點A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.6.設變量x,y滿足約束條件則目標函數(shù)的最小值為()A.3 B.1C.0 D.﹣17.中國古代數(shù)學著作算法統(tǒng)宗中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見首日行里數(shù),請公仔細算相還.”其大意為:有一個人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里8.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.9.已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,若,則()A. B.C. D.10.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.3711.下列命題中正確的個數(shù)為()①若向量,與空間任意向量都不能構成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.412.如圖所示,直三棱柱中,,,分別是,的中點,,則與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一平面直角坐標系中,已知,現(xiàn)沿x軸將坐標平面折成60°的二面角,則折疊后A,B兩點間的距離為___________.14.若函數(shù)在區(qū)間內存在最大值,則實數(shù)的取值范圍是____________.15.已知函數(shù),若有兩個零點,則的范圍是______16.若直線與直線平行,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列的前n項和為,,(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個等差數(shù)列,記插入的這n個數(shù)之和為,求數(shù)列的前n項和18.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.19.(12分)2017年廈門金磚會晤期間產(chǎn)生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態(tài)公園通過種植紅樹林的方式中和會晤期間產(chǎn)生的碳排放,擬用20年時間將碳排放全部吸收,實現(xiàn)“零碳排放”目標,向世界傳遞低碳,環(huán)保辦會的積極信號,踐行金磚國家倡導的可持續(xù)發(fā)展精神據(jù)研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個遞推公式,表示與之間的關系;②證明:是等比數(shù)列,并求的通項公式;(2)為了提前5年實現(xiàn)廈門會晤“零碳排放”的目標,m的最小值為多少?參考數(shù)據(jù):,,20.(12分)的內角A,B,C的對邊分別為a,b,c.已知.(1)求B(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個條件中任選一個,補充在橫線上.注:如果選擇多個條件分別解答,按第一個解答計分.21.(12分)在正方體中,,,分別是,,的中點.(1)證明:平面平面;(2)求直線與所成角的正切值.22.(10分)已知數(shù)列的前項和,且(1)證明:數(shù)列為等差數(shù)列;(2)設,記數(shù)列的前項和為,若,對任意恒成立,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標準方程為:,由切線長得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B2、A【解析】先解不等式求得集合再求交集.【詳解】解不等式得:,則有,解不等式,解得或,則有或,所以為.故選:A.3、D【解析】利用等差數(shù)列性質得到,,計算得到答案.詳解】等差數(shù)列中,故選D【點睛】本題考查了等差數(shù)列的計算,利用性質可以簡化運算,是解題的關鍵.4、D【解析】根據(jù)求解即可.【詳解】因為等比數(shù)列,,所以.故選:D5、A【解析】根據(jù)題意可表示出漸近線方程,進而可知的斜率,表示出直線方程,求出的坐標進而求得A點坐標,代入雙曲線方程整理求得和的關系式,進而求得離心率【詳解】:由題意設相應的漸近線:,則根據(jù)直線的斜率為,則的方程為,聯(lián)立雙曲線漸近線方程求出,則,,則的中點,把中點坐標代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:6、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結合知過時取最小值故選:C7、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C8、B【解析】根據(jù)邏輯聯(lián)結詞“且”,一假則假,對四個選項一一判斷直接即可判斷.【詳解】邏輯聯(lián)結詞“且”,一假則假.因為命題p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯誤;為真,故B正確;為假,故C錯誤;為假,故D錯誤.故選:B9、A【解析】結合等差中項和等比中項分別求出和,代值運算化簡即可.【詳解】由是等比數(shù)列可得,是等差數(shù)列可得,所以,故選:A10、C【解析】直接按照等差數(shù)列項數(shù)性質求解即可.【詳解】數(shù)列的前6項之和為.故選:C.11、C【解析】根據(jù)題意、空間向量基底的概念和共線的運算即可判斷命題①②③,根據(jù)空間向量的平行關系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構成一個基底,則與共線或與其中有一個為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個向量,存在唯一的實數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個實數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯誤.故選:C12、A【解析】取的中點為,的中點為,然后可得或其補角即為與所成角,然后在中求出答案即可.【詳解】取的中點為,的中點為,,,所以或其補角即為與所成角,設,則,,在,,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】平面直角坐標系中,沿軸將坐標平面折成的二面角后,在平面上的射影為,作軸,交軸于點,通過用向量的數(shù)量積轉化求解距離即可.【詳解】在直角坐標系中,已知,現(xiàn)沿軸將坐標平面折成的二面角后,在平面上的射影為,作軸,交軸于點,所以,所以,所以,故答案為:14、【解析】首先利用導數(shù)判斷函數(shù)的單調性,再根據(jù)函數(shù)在開區(qū)間內存在最大值,可判斷極大值點就是最大值點,列式求解.【詳解】由題可知:所以函數(shù)在單調遞減,在單調遞增,故函數(shù)的極大值為.所以在開區(qū)間內的最大值一定是又,所以得實數(shù)的取值范圍是故答案為:【點睛】關鍵點點睛:由函數(shù)在開區(qū)間內若存在最大值,即極大值點在區(qū)間內,同時還得滿足極大值點是最大值,還需列不等式,不要忽略這個不等式.15、【解析】利用導數(shù)求出函數(shù)的最小值,結合函數(shù)的圖象列式可求出結果.【詳解】,當時,,在上為增函數(shù),最多只有一個零點,不符合題意;當時,令,得,令,得,所以在上為減函數(shù),在上為增函數(shù),所以在時取得極小值為,也是最小值,因為當趨近于正負無窮時,都是趨近于正無窮,所以要使有兩個零點,只要,即就可以了.所以的范圍是故答案為:.16、【解析】根據(jù)直線平行的充要條件即可求出【詳解】當時,顯然兩直線不平行,所以依題有,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)設等比數(shù)列公比為q,利用與關系可求q,在中令n=1可求;(2)根據(jù)等差數(shù)列前n項和公式可求,分析{}的通項公式,利用錯位相減法求其前n項和.【小問1詳解】設等比數(shù)列的公比為q,由己知,可得,兩式相減可得,即,整理得,可知,已知,令,得,即,解得,故等比數(shù)列的通項公式為;【小問2詳解】由題意知在與之間插入n個數(shù),這個數(shù)組成以為首項的等差數(shù)列,∴,設{}前n項和為,①①×3:②①-②:18、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,19、(1)①;②證明見解析,(2)最少為6.56噸【解析】(1)①根據(jù)題意直接寫出一個遞推公式即可;②要證明是等比數(shù)列,只要證明為一個常數(shù)即可,求出等比數(shù)列的通項公式,即可求出的通項公式;(2)記為數(shù)列的前n項和,根據(jù)題意求出,利用分組求和法求出數(shù)列的前n項和,再令,解之即可得出答案.【小問1詳解】解:①依題意得,則,②因為,所以,所以,因為所以數(shù)列是等比數(shù)列,首項是,公比是1.02,所以,所以;【小問2詳解】解:記為數(shù)列的前n項和,,依題,所以,所以m最少為6.56噸20、(1)(2)答案見解析【解析】(1)由正弦定理及正弦的兩角和公式可求解;(2)選擇條件①,由正弦定理及輔助角公式可求解;選擇條件②,由余弦定理及正切三角函數(shù)可求解;選擇條件③,由余弦定理可求解.【小問1詳解】由,可得,則.∴,在中,,則,∵,∴,∴,∵,∴.【小問2詳解】選擇條件①,在中,,可得,∵,∴,∴,根據(jù)輔助角公式,可得,∵,∴,即,故選擇條件②由,得,∵,∴,因此,,整理得,即,則.在中,,∴.故.選擇條件③由,得,即,整理得,由于,則方程無解,故不存在這樣的三角形.21、(1)證明見解析(2)【解析】(1)分別證明∥平面,∥平面,最后利用面面平行的判定定理證明平面∥平面即可;(2)由∥得即為直線與所成角,在直角△即可求解.【小問1詳解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論