版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter9DesignofExperimentsandAnalysisofVarianceContents1. ElementsofaDesignedExperiment2. TheCompletelyRandomizedDesign:SingleFactor3. MultipleComparisonsofMeans4. TheRandomizedBlockDesign5. FactorialExperiments:TwoFactorsWhereWe’reGoingDiscusscriticalelementsinthedesignofasamplingexperimentLearnhowtosetupthreeexperimentaldesignsforcomparingmorethantwopopulationmeans:completelyrandomized,randomizedblock,andfactorialdesignsShowhowtoanalyzedatacollectedfromadesignedexperimentusingatechniquecalledananalysisofvariance(ANOVA)Presentafollow-upanalysistoanANOVA:Rankingmeans9.1ElementsofaDesignedExperimentResponseVariableTheresponsevariableisthevariableofinteresttobemeasuredintheexperiment.Wealsorefertotheresponseasthedependentvariable.Typically,theresponse/dependentvariableisquantitativeinnature.FactorsFactorsarethosevariableswhoseeffectontheresponseisofinteresttotheexperimenter.Quantitativefactorsaremeasuredonanumericalscale,whereasqualitativefactorsarethosethatarenot(naturally)measuredonanumericalscale.Factorsarealsoreferredtoasindependentvariables.FactorLevelsandTreatmentsFactorlevelsarethevaluesofthefactorusedintheexperiment.Thetreatmentsofanexperimentarethefactor-levelcombinationsused.ExperimentalUnitAnexperimentalunitistheobjectonwhichtheresponseandfactorsareobservedormeasured.DesignedandObservationalExperimentAdesignedstudyisoneforwhichtheanalystcontrolsthespecificationofthetreatmentsandthemethodofassigningtheexperimentalunitstoeachtreatment.Anobservationalstudyisoneforwhichtheanalystsimplyobservesthetreatmentsandtheresponseonasampleofexperimentalunits.ExperimentalProcessOverviewDesignedexperiment:ProcessandterminologyExamplesofExperimentsThirtystoresarerandomlyassigned1
of4(levels)storedisplays(independentvariable)toseetheeffectonsales(dependentvariable).Twohundredconsumersarerandomlyassigned1of3(levels)brandsofjuice(independentvariable)tostudyreaction(dependentvariable).9.2TheCompletelyRandomizedDesign:SingleFactorCompletelyRandomizedDesignAcompletelyrandomizeddesignisadesigninwhichtheexperimentalunitsarerandomlyassignedtothektreatmentsorinwhichindependentrandomsamplesofexperimentalunitsareselectedforeachtreatment.CompletelyRandomizedDesignExperimentalunits(subjects)areassignedrandomlytotreatmentSubjectsareassumedhomogeneousOnefactororindependentvariableTwoormoretreatmentlevelsorclassificationsAnalyzedbyone-wayAnalysisofVariance(ANOVA)Example:RandomizedDesign-BottledWaterBrandsStudyFactors(BottledWaterBrands)FactorLevels(Treatments)BrandABrandBBrandCExperimentalUnits5randomconsumers5randomconsumers5randomconsumersDependentVariable(Response):TastePreferenceScale,1-102,5,8,6,66,7,9,2,58,4,4,6,7ANOVAF-TestTeststheequalityoftwoormore(k)populationmeansVariablesOnenominalscaledindependentvariableTwoormore(k)treatmentlevelsor
classificationsOneintervalorratioscaleddependent
variableUsedtoanalyzecompletelyrandomizedexperimentaldesignsANOVA
PartitionsTotalVariationSumofSquaresWithinSumofSquaresErrorWithinGroupsVariationSumofSquaresAmongSumofSquaresBetweenSumofSquaresTreatmentAmongGroupsVariationTotalvariationVariationduetotreatmentVariationduetorandomsamplingTotalVariationxGroup1Group2Group3Response,xTreatmentVariationx3xx2x1Group1Group2Group3Response,xRandom(Error)Variationx2x1x3Group1Group2Group3Response,xANOVAF-Test
TestStatisticTestStatistic
F=MST/MSEMSTisMeanSquareforTreatmentMSEisMeanSquareforErrorDegreesofFreedom
1=k–1numeratordegreesoffreedom
2=n–kdenominatordegreesoffreedomk=Numberofgroupsn=TotalsamplesizeANOVASummaryTableSourceof
VariationDegrees
of
FreedomSumof
SquaresMean
Square
(Variance)FTreatmentk–1SSTMST=
SST/(k–1)MSTMSEErrorn–kSSEMSE=
SSE/(n–k)Totaln–1SS(Total)=
SST+SSEANOVAF-TestCriticalValue
Ifmeansareequal,F=MST/MSE
≈1.OnlyrejectlargeF!Alwaysaone-sidedtail!F(α;k–1,n–k)0RejectH0DoNotRejectH0FANOVAF-TesttoComparekTreatmentMeans:CompletelyRandomizedDesignH0:μ1=μ2=…=μk
Ha:AtleasttwotreatmentmeansdifferTestStatistic:Rejectionregion:F>F
,p-value:P(F>Fc)whereF
isbasedon(k–1)numeratordegreesoffreedom(associatedwithMST)and(n–k)denominatordegreesoffreedom(associatedwithMSE).ConditionsRequiredforaValidANOVAF-test:
CompletelyRandomizedDesign
1. Thesamplesarerandomlyselectedinanindependentmannerfromthektreatmentpopulations.(Thiscanbeaccomplishedbyrandomlyassigningtheexperimentalunitstothetreatments.)2. Allksampledpopulationshavedistributionsthatareapproximatelynormal.3. Thekpopulationvariancesareequal
(i.e.,ANOVAF-TestHypothesesH0:
1=
2=
3=...=
kAllpopulationmeans
areequalNotreatmenteffectHa:NotAll
iAreEqualAtleast2populationmeansaredifferentTreatmenteffect
iswrong
xf(x)
1=
2=
3123xf(x)
=
WhyVariances?SametreatmentvariationDifferentrandomvariationPossibletoconcludemeansareequal!Pop1Pop2Pop3Pop4Pop6Pop5VariancesWITHINdifferAPop1Pop2Pop3Pop4Pop6Pop5VariancesAMONGdifferBDifferenttreatmentvariationSamerandomvariationANOVABasicIdeaComparestwotypesofvariationtotestequalityofmeansComparisonbasisisratioofvariancesIftreatmentvariationissignificantlygreaterthanrandomvariationthenmeansarenotequalVariationmeasuresareobtainedby‘partitioning’totalvariationWhatDoYouDoWhentheAssumptionsAreNotSatisfiedforanANOVAforaCompletelyRandomizedDesign?Answer:UseanonparametricstatisticalmethodsuchastheKruskal-WallisH-test.StepsforConductinganANOVAforaCompletelyRandomizedDesignBesurethedesignistrulycompletelyrandomized,withindependentrandomsamplesforeachtreatment.Checktheassumptionsofnormalityandequalvariances.StepsforConductinganANOVAforaCompletelyRandomizedDesign(cont)CreateanANOVAsummarytablethatspecifiesthevariabilityattributabletotreatmentsanderror,makingsurethatitleadstothecalculationoftheF-statisticfortestingthenullhypothesisthatthetreatmentmeansareequalinthepopulation.Useastatisticalsoftwareprogramtoobtainthenumericalresults.Ifnosuchpackageisavailable,usethecalculationformulasinAppendixC.StepsforConductinganANOVAforaCompletelyRandomizedDesign(cont)IftheF-testleadstotheconclusionthatthemeansdiffer,Conductamultiplecomparisonsprocedureforasmanyofthepairsofmeansasyouwishtocompare.Usetheresultstosummarizethestatisticallysignificantdifferencesamongthetreatmentmeans.
Ifdesired,formconfidenceintervalsforoneormoreindividualtreatmentmeans.StepsforConductinganANOVAforaCompletelyRandomizedDesign(cont)IftheF-testleadstothenonrejectionofthenullhypothesisthatthetreatmentmeansareequal,considerthefollowingpossibilities:Thetreatmentmeansareequal–thatis,thenullhypothesisistrue.StepsforConductinganANOVAforaCompletelyRandomizedDesign(cont)Thetreatmentmeansreallydiffer,butotherimportantfactorsaffectingtheresponsearenotaccountedforbythecompletelyrandomizeddesign.Thesefactorsinflatethesamplingvariability,asmeasuredbyMSE,resultinginsmallervaluesoftheF-statistic.Eitherincreasethesamplesizeforeachtreatmentoruseadifferentexperimentaldesignthataccountsfortheotherfactorsaffectingtheresponse.StepsforConductinganANOVAforaCompletelyRandomizedDesign(cont)Note:BecarefulnottoautomaticallyconcludethatthetreatmentmeansareequalbecausethepossibilityofaTypeIIerrormustbeconsideredifyouacceptH0.Example:ProductionF-TestAsproductionmanager,youwanttoseeifthreefillingmachineshavedifferentmeanfillingtimes.Youassign15similarlytrainedandexperiencedworkers,5permachine,tothemachines.Atthe0.05
levelofsignificance,isthereadifferenceinmeanfillingtimes?
Mach1 Mach2
Mach3
25.40 23.40 20.00
26.31 21.80 22.20
24.10 23.50 19.75
23.74 22.75 20.60
25.10 21.60 20.40Example:ProductionF-Test(cont)H0:Ha:
=
1=
2=
F03.89
=0.05
1
=
2=
3Notallequal0.052
12CriticalValue(s):Recallthatk
=numberofgroupsandn
=totalsamplesize.Sowehavek=3andn=15forthisexample.Then
1
=k–1numeratordegreesoffreedom=2
2
=n–kdenominatordegreesoffreedom=12.SetuptheF-test:Example:ProductionF-Test(cont)ANOVASummaryTableTreatment
(Machines)3–1=247.164023.582025.60Error15–3=1211.05320.9211Total15–1=1458.2172Sourceof
VariationDegrees
of
FreedomSumof
SquaresMean
Square
(Variance)FExample:ProductionF-Test(cont)H0:Ha:
=
1=
2=
CriticalValue(s):TestStatistic:Decision:Conclusion:F03.89
=0.05
1=
2=
3Notallequal0.052
12Rejectat
=0.05ThereisevidencepopulationmeansaredifferentFMSTMSE
2358200.921125.6.9.3MultipleComparisonsofMeansDeterminingtheNumberofPairwiseComparisonsofTreatmentMeansIngeneral,iftherearektreatmentmeans,therearepairsofmeansthatcanbecompared.ErrorRatesForasinglecomparisonoftwomeansinadesignedexperiment,theprobabilityofmakingaTypeIerror(i.e.,theprobabilityofconcludingthatadifferenceinthemeansexists,giventhatthemeansarethesame)iscalledacomparisonwiseerrorrate
(CER).Formultiplecomparisonsofmeansinadesignedexperiment,theprobabilityofmakingatleastoneTypeIerror(i.e.,theprobabilityofconcludingthatatleastonedifferenceinmeansexists,giventhattheareallthesame)iscalledanexperimentwiseerrorrate(EER).TukeyMethodsTukey(1949)developedhismultiplecomparisonsmethodinANOVAspecificallyforpairwisecomparisonswhenthesamplesizesofthetreatmentsareequal.BonferroniMethodTheBonferronimethod(seeMiller,1981),liketheTukeyprocedure,canbeappliedwhenpairwisecomparisonsareofinterest;however,Bonferroni’smethoddoesnotrequireequalsamplesizes.SchefféMethodScheffé(1953)developedamoregeneralprocedureforcomparingallpossiblelinearcombinationsoftreatmentmeans(calledcontrasts).Consequently,whenmakingpairwisecomparisons,theconfidenceintervalsproducedbyScheffé’smethodwillgenerallybewiderthantheTukeyorBonferroniconfidenceintervals.TukeyProcedurexf(x)m1=m2m32Groupings Tellswhichpopulation
meansaresignificantly
differentExample:μ1=μ2
≠
μ3
PosthocprocedureDoneafterrejectionof
equalmeansinANOVA Outputfrommany
statisticalcomputer
programsGuidelines9.4TheRandomizedBlockDesignRandomizedBlockDesignTherandomizedblockdesignconsistsofatwo-stepprocedure:1. Matchedsetsofexperimentalunits,calledblocks,areformed,eachblockconsistingofkexperimentalunits(wherekisthenumberoftreatments).Thebblocksshouldconsistofexperimentalunitsthatareassimilaraspossible.2. Oneexperimentalunitfromeachblockisrandomlyassignedtoeachtreatment,resultinginatotalofn
=bkresponses.RandomizedBlockDesign
TotalVariationPartitioningANOVAF-TesttoComparekTreatmentMeans:RandomizedBlockDesignH0:μ1=μ2=…=μk
Ha:AtleasttwotreatmentmeansdifferTestStatistic:Rejectionregion:F>F
,p-value:P(F>Fc)whereFa
isbasedon(k–1)numeratordegreesoffreedomand(n–b–k+1)denominatordegreesoffreedom.ConditionsRequiredforaValidANOVAF-test:
RandomizedBlockDesign
Thebblocksarerandomlyselected,andallktreatmentsareapplied(inrandomorder)toeachblock.Thedistributionsofobservationscorrespondingtoallbkblock-treatmentcombinationsareapproximatelynormal.Allbkblock-treatmentdistributionshaveequalvariances.RandomizedBlockDesign
F-TestTestStatisticTestStatistic
F=MST/MSEMSTisMeanSquareforTreatmentMSEisMeanSquareforErrorDegreesofFreedom
1=k–1(numerator)
2=n–k–b+1(denominator)k=Numberofgroupsn=Totalsamplesizeb=NumberofblocksExample:RandomizedBlockDesignF-TestAproductionmanagerwantstoseeifthreeassemblymethodshavedifferentmeanassemblytimes(inminutes).Fiveemployeeswereselectedatrandomandassignedtouseeachassemblymethod.Atthe0.05
levelofsignificance,isthereadifferenceinmeanassemblytimes?Employee
Method1
Method2
Method3 1 5.4 3.6 4.0
2 4.1 3.8 2.9
3 6.1 5.6 4.3
4 3.6 2.3 2.6
5 5.3 4.7 3.4Example:RandomizedBlockDesignF-Test(cont)H0:Ha:
=
1=
2=F04.46
=0.05
1=
2=
3Notallequal0.052
8CriticalValue(s):Wehavek=3andn=5.Definethetest:Example:RandomizedBlockDesignF-Test(cont)Treatment
(Methods)3–1=25.432.7112.9Error15–3–
5+1
=81.68.21Total15–1=1417.8Sourceof
VariationDegrees
of
FreedomSumof
SquaresMean
Square
(Variance)FBlock
(Employee)5–1=410.692.6712.7Example:RandomizedBlockDesignF-Test(cont)H0:Ha:
=
1=
2=CriticalValue(s):TestStatistic:Decision:Conclusion:F04.46
=0.05
1=
2=
3Notallequal0.052
8Rejectat
=0.05ThereisevidencepopulationmeansaredifferentFMSTMSE
2.710.2112.9StepsforConductinganANOVAforaRandomizedBlockDesign1. Besurethedesignconsistsofblocks(preferably,blocksofhomogeneousexperimentalunits)andthateachtreatmentisrandomlyassignedtooneexperimentalunitineachblock.2. Ifpossible,checktheassumptionsofnormalityandequalvariancesforallblock-treatmentcombinations.[Note:Thismaybedifficulttodobecausethedesignwilllikelyhaveonlyoneobservationforeachblock-treatmentcombination.]StepsforConductinganANOVAforaRandomizedBlockDesign(cont)3. CreateanANOVAsummarytablethatspecifiesthevariabilityattributabletoTreatments,Blocks,andError,whichleadstothecalculationoftheF-statistictotestthenullhypothesisthatthetreatmentmeansareequalinthepopulation.UseastatisticalsoftwarepackageorthecalculationformulasinAppendixCtoobtainthenecessarynumericalingredients.StepsforConductinganANOVAforaRandomizedBlockDesign(cont)4. IftheF-testleadstotheconclusionthatthemeansdiffer,usetheBonferroni,Tukey,orsimilarproceduretoconductmultiplecomparisonsofasmanyofthepairsofmeansasyouwish.Usetheresultstosummarizethestatisticallysignificantdifferencesamongthetreatmentmeans.Rememberthat,ingeneral,therandomizedblockdesigncannotbeusedtoformconfidenceintervalsforindividualtreatmentmeans.StepsforConductinganANOVAforaRandomizedBlockDesign(cont)5.IftheF-testleadstothenonrejectionofthenullhypothesisthatthetreatmentmeansareequal,considerthefollowingpossibilities:a.Thetreatmentmeansareequal–thatis,thenullhypothesisistrue.StepsforConductinganANOVAforaRandomizedBlockDesign(cont)b.Thetreatmentmeansreallydiffer,butotherimportantfactorsaffectingtheresponsearenotaccountedforbytherandomizedblockdesign.Thesefactorsinflatethesamplingvariability,asmeasuredbyMSE,resultinginsmallervaluesoftheF-statistic.Eitherincreasethesamplesizeforeachtreatmentorconductanexperimentthataccountsfortheotherfactorsaffectingtheresponse.DonotautomaticallyreachtheformerconclusionbecausethepossibilityofaTypeIIerrormustbeconsideredifyouacceptH0.StepsforConductinganANOVAforaRandomizedBlockDesign(cont)6. Ifdesired,conducttheF-testofthenullhypothesisthattheblockmeansareequal.Rejectionofthishypothesislendsstatisticalsupporttousingtherandomizedblockdesign.StepsforConductinganANOVAforaRandomizedBlockDesign(cont)Note:Itisoftendifficulttocheckwhethertheassumptionsforarandomizedblockdesignaresatisfied.Thereisusuallyonlyoneobservationforeachblock-treatmentcombination.Whenyoufeeltheseassumptionsarelikelytobeviolated,anonparametricprocedureisadvisable.WhatDoYouDoWhentheAssumptionsAreNotSatisfiedforanANOVAforaCompletelyRandomizedDesign?Answer:UseanonparametricstatisticalmethodsuchastheFriedmanFrtest.9.5FactorialExperiments:
TwoFactorsFactorialDesignAcompletefactorialexperimentisoneinwhicheveryfactor-levelcombinationisemployed,thatis,thenumberoftreatmentsintheexperimentequalsthetotalnumberoffactor-levelcombinations.Alsoreferredtoasatwo-wayclassification.FactorialDesignTodeterminethenatureofthetreatmenteffect,ifany,ontheresponseinafactorialexperiment,weneedtobreakthetreatmentvariabilityintothreecomponents:InteractionbetweenFactorsAandB,MainEffectofFactorA,andMainEffectofFactorB.FactorialDesign(cont)TheFactorInteractioncomponentisusedtotestwhetherthefactorscombinetoaffecttheresponse,whiletheFactorMainEffectcomponentsareusedtodeterminewhetherthefactorsseparatelyaffecttheresponse.FactorialDesignExperimentalunits(subjects)areassignedrandomlytotreatmentsSubjectsareassumedhomogeneousTwoormorefactorsorindependentvariablesEachhastwoormoretreatments(levels)Analyzedbytwo-wayANOVAProcedureforAnalysisofTwo-FactorFactorialExperimentPartitiontheTotalSumofSquaresintotheTreatmentsandErrorcomponents.UseeitherastatisticalsoftwarepackageorthecalculationformulasinAppendixCtoaccomplishthepartitioning.ProcedureforAnalysisofTwo-FactorFactorialExperiment(cont)UsetheF-ratioofMeanSquareforTreatmentstoMeanSquareforErrortotestthenullhypothesisthatthetreatmentmeansareequal.Ifthetestresultsinnonrejectionofthenullhypothesis,considerrefiningtheexperimentbyincreasingthenumberofreplicationsorintroducingotherfactors.Alsoconsiderthepossibilitythattheresponseisunrelatedtothetwofactors.Ifthetestresultsinrejectionofthenullhypothesis,thenproceedtostep3.ProcedureforAnalysisofTwo-FactorFactorialExperiment(cont)PartitiontheTreatmentsSumofSquaresintotheMainEffectandInteractionSumofSquares.UseeitherastatisticalsoftwarepackageorthecalculationformulasinAppendixCtoaccomplishthepartitioning.ProcedureforAnalysisofTwo-FactorFactorialExperiment(cont)TestthenullhypothesisthatfactorsAandBdonotinteracttoaffecttheresponsebycomputingtheF-ratiooftheMeanSquareforInteractiontotheMeanSquareforError.Ifthetestresultsinnonrejectionofthenullhypothesis,proceedtostep5.Ifthetestresultsinrejectionofthenullhypothesis,concludethatthetwofactorsinteracttoaffectthemeanresponse.Thenproceedtostep6a.ProcedureforAnalysisofTwo-FactorFactorialExperiment(cont)ConducttestsoftwonullhypothesesthatthemeanresponseisthesameateachleveloffactorAandfactorB.ComputetwoF-ratiosbycomparingtheMeanSquareforeachFactorMainEffecttotheMeanSquareforError.Ifoneorbothtestsresultinrejectionofthenullhypothesis,concludethatthefactoraffectsthemeanresponse.Proceedtostep6b.ProcedureforAnalysisofTwo-FactorFactorialExperiment(cont)Ifbothtestsresultinnonrejection,anapparentcontradictionhasoccurred.Althoughthetreatmentmeansapparentlydiffer(step2test),theinteraction(step4)andmaineffect(step5)testshavenotsupportedthatresult.Furtherexperimentationisadvised.ProcedureforAnalysisofTwo-FactorFactorialExperiment(cont)Comparethemeans:Ifthetestforinteraction(step4)issignificant,useamultiplecomparisonsproceduretocompareanyorallpairsofthetreatmentmeans.Ifthetestforoneorbothmaineffects(step5)issignificant,useamultiplecomparisonsproceduretocomparethepairsofmeanscorrespondingtothelevelsofthesignificantfactor(s).PartitioningtheTotalSumofSquaresPartitioningtheTotalSumofSquaresforatwo-factorfactorialANOVATestsConductedforFactorialExperiments:CompletelyRandomizedDesign,rReplicatesperTreatmentTestforTreatmentMeansH0:NodifferenceamongtheabtreatmentmeansHa:AtleasttwotreatmentmeansdifferTestStatistic:Rejectionregion:F>F
p-value:P(F>Fc)whereFisbasedon(ab–1)numeratorand
(n–ab)denominatordegreesoffreedom
[Note:n=abr.]ANOVATestsConductedforFactorialExperiments:CompletelyRandomizedDesign,rReplicatesperTreatment(cont)TestforFactorInteractionH0:FactorsAandBdonotinteracttoaffectthe
responsemeanHa:FactorsAandBdointeracttoaffecttheresponse
meanTestStatistic:Rejectionregion:F>F
p-value:P(F>Fc)whereFisbasedon(a–1)(b–1)numeratorand
(n–ab)denominatordegreesoffreedomANOVATestsConductedforFactorialExperiments:CompletelyRandomizedDesign,rReplicatesperTreatment(cont)TestforMainEffectofFactorAH0:NodifferenceamongtheameanlevelsoffactorA
Ha:AtleasttwofactorAmeanlevelsdifferTestStatistic:Rejectionregion:F>F
,p-value:P(F>Fc)whereFisbasedon(a–1)numeratorand
(n–ab)denominatordegreesoffreedomANOVATestsConductedforFactorialExperiments:CompletelyRandomizedDesign,rReplicatesperTreatment(cont)TestforMainEffectofFactorBH0:NodifferenceamongthebmeanlevelsoffactorB
Ha:AtleasttwofactorBmeanlevelsdifferTestStatistic:Rejectionregion:F>F
,p-value:P(F>Fc)WhereFisbasedon(b–1)numeratorand
(n–ab)denominatordegreesoffreedomConditionsRequiredforValid
F-testsinFactorialExperimentsTheresponsedistributionforeachfactor-levelcombination(treatment)isnormal.Theresponsevarianceisconstantforalltreatments.Randomandindependentsamplesofexperimentalunitsareassociatedwitheachtreatment.ANOVADataTableSchemaxijkLeveliFactorALeveljFactorBObservationkFactorFactorBA12...b1x111x121...x1b1x112x122...x1b22x211x221...x2b1x212x222...x2b2:::::axa11xa21...xab1xa12xa22...xab2TreatmentExample:FactorialDesignFactor2(TrainingMethod)Factor
LevelsLevel1Self-PacedLevel2Class-roomLevel3On-lineVirtualLevel115hr.
10hr.
22hr.
Factor1
(Motivation)(High)11hr.
12hr.
17hr.
Level227hr.
15hr.
31hr.
(Low)29hr.
17hr.
49hr.
TreatmentAdvantages
ofFactorialDesignsSavestimeandefforte.g.,Coulduseseparatecompletely
randomizeddesignsforeachvariableControlsconfoundingeffectsbyputtingothervariablesintomodelCanexploreinteractionbetweenvariablesTwo-WayANOVATeststheequalityoftwoormorepopulationwhenseveralindependentvariablesareusedSameresultsasseparateone-wayANOVAoneachvariableNointeractioncanbetestedUsedtoanalyzefactorialdesignsInteractionOccurswheneffectsofonefactorvaryaccordingtolevelsofotherfactorWhensignificant,interpretationofmaineffects(AandB)iscomplicatedCanbedetectedIndatatable,patternofcellmeansinonerow
differsfromanotherrowIngraphofcellmeans,linescrossGraphsofInteractionEffectsofmotivation(highorlow)andtrainingmethod(A,B,C)onmeanlearningtimeInteractionNoInteractionAverageResponseABCHighLowAverageResponseABCHighLowTwo-WayANOVA
TotalVariationPartitioningTwo-WayANOVA
SummaryTableSourceof
VariationDegreesof
FreedomSumof
SquaresMean
SquareFA
(Row)a–1SS(A)MS(A)MS(A)MSEB
(Column)b–1SS(B)MS(B)MS(B)MSEAB
(Interaction)(a–1)(b–1)SS(AB)MS(AB)MS(AB)MSEErrorn–abSSEMSETotaln–1SS(Total)SameasotherdesignsExample:TreatmentMeansF-Test(1of4)HumanResourceswantstodetermineiftrainingtimeisdifferentbasedonmotivationlevelandtrainingmethod.ConducttheappropriateANOVAtests.Useα=0.05
foreachtest.TrainingMethodFactor
LevelsSelf–
pacedClassroomOn-lineVirtual15hr.10hr.22hr.MotivationHigh11hr.12hr.17hr.27hr.15hr.31hr.Low29hr.17hr.49hr.Example:TreatmentMeansF-Test(2of4)H0:Ha:
=
1=
2=CriticalValue(s):F04.39
=0.05
The6treatment
meansareequalAtleast2differ0.055
6Example:TreatmentMeansF-Test(3of4)Sourceof
VariationDegreesof
FreedomSumof
SquaresMean
SquareFModel51201.8240.35Error6188.531.42Corrected
Total7.65111390.3Two-WayANOVASummaryTableExample:TreatmentMeansF-Test(4of4)H0:Ha:
=
1=
2=CriticalValue(s):F04.39
=0.05
The6treatment
meansareequalAtleast2differ0.055
6TestStatistic:Decision:Conclusion:Rejectat
=0.05ThereisevidencepopulationmeansaredifferentExample:FactorInteractionF-Test(1of3)H0:Ha:
=
1=
2=CriticalValue(s):F05.14
=0.05ThefactorsdonotinteractThefactorsinteract0.052
6Example:FactorInteractionF-Test(2of3)Sourceof
VariationDegreesof
FreedomSumof
SquaresMean
SquareFA
(Row)1546.75546.75B
(Colu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年及未來5年市場數(shù)據(jù)中國浸膠機(jī)械市場全面調(diào)研及行業(yè)投資潛力預(yù)測報(bào)告
- 手機(jī)店合同范本
- 苗木協(xié)議書范本
- 苗木追加合同范本
- 蔬菜代賣協(xié)議書
- 融資性合同范本
- 解除設(shè)備合同協(xié)議書
- 認(rèn)購期權(quán)協(xié)議書
- 設(shè)備賣出協(xié)議書
- 設(shè)備管理協(xié)議書
- 2025年區(qū)域經(jīng)濟(jì)一體化發(fā)展模式可行性研究報(bào)告及總結(jié)分析
- 餐飲店前臺(tái)接待培訓(xùn)課件
- 信任價(jià)格關(guān)系研究-洞察與解讀
- 四大名著經(jīng)典講解課件
- (北師大2024版)生物八上全冊知識(shí)點(diǎn)(默寫版+背誦版)
- 精神科常見藥物不良反應(yīng)
- 2025年小學(xué)必讀書目《窗邊的小豆豆》閱讀測試試題及答案
- 鋁合金車身輕量化技術(shù)-洞察與解讀
- 2025江蘇鹽城市水務(wù)集團(tuán)有限公司招聘專業(yè)人員34人筆試題庫歷年考點(diǎn)版附帶答案詳解
- 學(xué)堂在線 雨課堂 學(xué)堂云 實(shí)驗(yàn)室安全密碼 章節(jié)測試答案
- 華為培訓(xùn)心得體會(huì)
評論
0/150
提交評論