版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京西城8中2026屆數(shù)學(xué)高二上期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等差數(shù)列中,已知,則數(shù)列的前6項(xiàng)之和為()A.12 B.32C.36 D.372.已知集合M={0,x},N={1,2},若M∩N={2},則M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能確定3.已知,記M到x軸的距離為a,到y(tǒng)軸的距離為b,到z軸的距離為c,則()A. B.C. D.4.已知正方體中,分別為棱的中點(diǎn),則直線與所成角的余弦值為()A. B.C. D.5.函數(shù)的極大值點(diǎn)為()A. B.C. D.不存在6.在四面體中,點(diǎn)G是的重心,設(shè),,,則()A. B.C. D.7.某公司要建造一個(gè)長(zhǎng)方體狀的無蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價(jià)為15元,箱壁每1m2造價(jià)為12元,則箱子的最低總造價(jià)為()A.72元 B.300元C.512元 D.816元8.已知數(shù)列滿足,且,,則()A. B.C. D.9.下列命題中正確的是()A.拋物線的焦點(diǎn)坐標(biāo)為B.拋物線的準(zhǔn)線方程為x=?1C.拋物線的圖象關(guān)于x軸對(duì)稱D.拋物線的圖象關(guān)于y軸對(duì)稱10.如果,那么下列不等式成立的是()A. B.C. D.11.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A.2 B.4C. D.12.已知x是上的一個(gè)隨機(jī)的實(shí)數(shù),則使x滿足的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.假設(shè)要考查某公司生產(chǎn)的袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)法抽取樣本時(shí),先將800袋牛奶按000,001,,799進(jìn)行編號(hào),若從隨機(jī)數(shù)表第7行第8列的數(shù)開始向右讀,則得到的第4個(gè)的樣本個(gè)體的編號(hào)是______(下面摘取了隨機(jī)數(shù)表第7行到第9行)84421753315724550688770474476721763350258392120676630163785916955667199810507175128673580744395238793321123429786456078252420744381551001342996602795414.將一枚質(zhì)地均勻的骰子,先后拋擲次,則出現(xiàn)向上的點(diǎn)數(shù)之和為的概率是________.15.已知圓錐的高為,體積為,則以該圓錐的母線為半徑的球的表面積為______________.16.在中,,,的外接圓半徑為,則邊c的長(zhǎng)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線及直線(1)若與有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍(2)若與交于,兩點(diǎn),且線段中點(diǎn)的橫坐標(biāo)為,求線段的長(zhǎng)18.(12分)命題:函數(shù)有意義;命題:實(shí)數(shù)滿足.(1)當(dāng)且為真時(shí),求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.19.(12分)求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程(1)焦點(diǎn)在x軸上,實(shí)軸長(zhǎng)為4,實(shí)半軸長(zhǎng)是虛半軸長(zhǎng)的2倍;(2)焦點(diǎn)在y軸上,漸近線方程為,焦距長(zhǎng)為20.(12分)如圖,已知三棱錐的側(cè)棱,,兩兩垂直,且,,是的中點(diǎn).(1)求異面直線與所成角的余弦值;(2)求點(diǎn)到面的距離.(3)求二面角的平面角的正切值.21.(12分)已知直線過點(diǎn),且被兩條平行直線,截得的線段長(zhǎng)為.(1)求的最小值;(2)當(dāng)直線與軸平行時(shí),求的值.22.(10分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】直接按照等差數(shù)列項(xiàng)數(shù)性質(zhì)求解即可.【詳解】數(shù)列的前6項(xiàng)之和為.故選:C.2、C【解析】集合M={0,x},N={1,2},若M∩N={2},則.所以.故選C.點(diǎn)睛:集合的交集即為由兩個(gè)集合的公共元素組成的集合,集合的并集即由兩集合的所有元素組成.3、C【解析】分別求出點(diǎn)M在x軸,y軸,z軸上的投影點(diǎn)的坐標(biāo),再借助空間兩點(diǎn)間距離公式計(jì)算作答.【詳解】設(shè)點(diǎn)M在x軸上的投影點(diǎn),則,而x軸的方向向量,由得:,解得,則,設(shè)點(diǎn)M在y軸上的投影點(diǎn),則,而y軸的方向向量,由得:,解得,則,設(shè)點(diǎn)M在z軸上的投影點(diǎn),則,而z軸的方向向量,由得:,解得,則,所以.故選:C4、D【解析】以D為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,B,D1點(diǎn)的坐標(biāo),利用直線夾角的向量求法求解【詳解】如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長(zhǎng)為2,則,,,,,直線與所成角的余弦值為:.故選D【點(diǎn)睛】本題主要考查了空間向量的應(yīng)用及向量夾角的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題5、B【解析】求導(dǎo),令導(dǎo)數(shù)等于0,然后判斷導(dǎo)數(shù)符號(hào)可得,或者根據(jù)對(duì)勾函數(shù)圖象可解.【詳解】令,得,因?yàn)闀r(shí),,時(shí),,所以時(shí)有極大值;當(dāng)時(shí),,時(shí),,所以時(shí)有極小值.故選:B6、B【解析】結(jié)合重心的知識(shí)以及空間向量運(yùn)算求得正確答案.【詳解】設(shè)是中點(diǎn),.故選:B7、D【解析】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價(jià)【詳解】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當(dāng)且僅當(dāng)x,即x=4時(shí),f(x)取最小值816元故選:D8、A【解析】由已知兩個(gè)不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點(diǎn)睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項(xiàng).解題關(guān)鍵是利用“兩邊夾”思想求解9、C【解析】根據(jù)拋物線的性質(zhì)逐項(xiàng)分析可得答案.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,故A錯(cuò)誤;拋物線的準(zhǔn)線方程為,故B錯(cuò)誤;拋物線的圖象關(guān)于x軸對(duì)稱,故C正確,D錯(cuò)誤;故選:C.10、D【解析】利用不等式的性質(zhì)分析判斷每個(gè)選項(xiàng).【詳解】由不等式的性質(zhì)可知,因?yàn)?,所以,,故A錯(cuò)誤,D正確;由,可得,,故B,C錯(cuò)誤.故選:D11、D【解析】因?yàn)閽佄锞€方程可化為,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離是,故選D.考點(diǎn):1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).12、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進(jìn)行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)隨機(jī)數(shù)表法依次列舉出來即可.【詳解】根據(jù)隨機(jī)數(shù)表法最先檢測(cè)的3袋牛奶編號(hào)為:331、572、455、068.故答案為:068.14、【解析】將向上的點(diǎn)數(shù)記作,先計(jì)算出所有的基本事件數(shù),并列舉出事件“出現(xiàn)向上的點(diǎn)數(shù)之和為”所包含的基本事件,然后利用古典概型的概率公式可計(jì)算出所求事件的概率.【詳解】將骰子先后拋擲次,出現(xiàn)向上的點(diǎn)數(shù)記作,則基本事件數(shù)為,向上的點(diǎn)數(shù)之和為這一事件記為,則事件所包含的基本事件有:、、,共個(gè)基本事件,因此,.故答案為:.【點(diǎn)睛】本題考查利用古典概型的概率公式計(jì)算概率,解題時(shí)一般要列舉出相應(yīng)的基本事件,遵循不重不漏的基本原則,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】利用圓錐體積公式可求得圓錐底面半徑,利用勾股定理可得母線長(zhǎng);根據(jù)球的表面積公式可求得結(jié)果.【詳解】設(shè)圓錐的底面半徑為,母線長(zhǎng)為,圓錐體積,,,以為半徑的球的表面積.故答案為:.16、【解析】由面積公式求得,結(jié)合外接圓半徑,利用正弦定理得到邊c的長(zhǎng).【詳解】,從而,由正弦定理得:,解得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)且;(2)【解析】(1)聯(lián)立直線與雙曲線方程,利用方程組與兩個(gè)交點(diǎn),求出k的范圍(2)設(shè)交點(diǎn)A(x1,y1),B(x2,y2),利用韋達(dá)定理以及弦長(zhǎng)公式求解即可【詳解】(1)聯(lián)立y=2可得∵與有兩個(gè)不同的交點(diǎn),且,且(2)設(shè),由(1)可知,又中點(diǎn)的橫坐標(biāo)為,,或又由(1)可知,為與有兩個(gè)不同交點(diǎn)時(shí),18、(1);(2)【解析】(1)首先將命題,化簡(jiǎn),然后由為真可得,均為真,取交集即可求出實(shí)數(shù)的取值范圍;(2)將是的充分不必要條件轉(zhuǎn)化為是的必要不充分條件,進(jìn)而將問題轉(zhuǎn)化為,從而求出實(shí)數(shù)的取值范圍【詳解】(1)若命題為真,則,解得,當(dāng)時(shí),命題,若命題為真,則,解得,所以,因?yàn)闉檎?,所以,均為真,所以,所以,所以?shí)數(shù)的取值范圍為(2)因?yàn)槭堑某浞植槐匾獥l件,所以是的必要不充分條件,所以,所以或,所以,所以實(shí)數(shù)的取值范圍是【點(diǎn)睛】本題主要考查根據(jù)真值表判斷復(fù)合命題中的單個(gè)命題的真假,根據(jù)充分不必要條件求參數(shù)的取值范圍,同時(shí)考查一元二次不等式的解法,分式不等式的解法.第(2)問關(guān)鍵是將問題等價(jià)轉(zhuǎn)化為兩個(gè)集合間的真包含關(guān)系19、(1)(2)【解析】(1)(2)直接由條件解出即可得到雙曲線方程.【小問1詳解】由題意有,解得:,則雙曲線的標(biāo)準(zhǔn)方程為:【小問2詳解】由題意有,解得:,則雙曲線的標(biāo)準(zhǔn)方程為:20、(1);(2);(3).【解析】(1)首先以為原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量為,先求,再求二面角的正切值.【詳解】(1)以為原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系.則有、、、.,,所以異面直線與所成角的余弦為(2)設(shè)平面的法向量為,則知:;知取,又,點(diǎn)到面的距離所以點(diǎn)到面的距離為.(3)(2)中已求平面的法向量,設(shè)平面的法向量為∵;∴取..設(shè)二面角的平面角為,則.【點(diǎn)睛】本題考查空間直角坐標(biāo)系求解空間角和點(diǎn)到平面的距離,重點(diǎn)考查計(jì)算能力,屬于中檔題型.21、(1)3;(2)5【解析】(1)由題可得和的距離即為的最小值;(2)可得此時(shí)直線的方程為,求出交點(diǎn)坐標(biāo)即可求出距離.【詳解】(1)由題可得當(dāng)且時(shí),取得最小值,即和的距離,由兩平行線間的距離公式,得,所以的最小值為3.(2)當(dāng)直線與軸平行時(shí),方程為,設(shè)直線與直線,分別交于點(diǎn),,則,,所以,即,所以.22、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以為坐標(biāo)原點(diǎn),以,所在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技公司年會(huì)策劃方案
- 深度解析(2026)《GBT 26436-2025禽白血病診斷技術(shù)》(2026年)深度解析
- 2025福建南平市邵武市金塘工業(yè)園區(qū)專職消防隊(duì)專職消防隊(duì)員招聘補(bǔ)充14人參考考試題庫及答案解析
- 深度解析(2026)《GBT 26001-2010燒結(jié)路面磚》(2026年)深度解析
- 2026渭南澄城縣征集見習(xí)崗位和見習(xí)人員招募備考筆試試題及答案解析
- 深度解析(2026)《GBT 25907.6-2010信息技術(shù) 維吾爾文、哈薩克文、柯爾克孜文編碼字符集 16點(diǎn)陣字型 第6部分:如克黑體》
- 深度解析(2026)《GBT 25865-2010飼料添加劑 硫酸鋅》(2026年)深度解析
- 深度解析(2026)《GBT 25746-2010可鍛鑄鐵金相檢驗(yàn)》(2026年)深度解析
- 2025廣東清遠(yuǎn)市清城區(qū)檔案館招聘后勤服務(wù)類人員1人參考考試試題及答案解析
- 2025年昆明市祿勸縣人力資源和社會(huì)保障局公益性崗位招聘(5人)參考筆試題庫附答案解析
- 個(gè)人形象設(shè)計(jì)與色彩診斷行業(yè)深度調(diào)研及發(fā)展項(xiàng)目商業(yè)計(jì)劃書
- 學(xué)前教育師范生科學(xué)領(lǐng)域教學(xué)知識(shí)水平提升策略研究
- 停車場(chǎng)租賃經(jīng)營(yíng)管理合同范本
- 居間銷售樹苗協(xié)議書
- 肩袖損傷的治療及護(hù)理
- 民辦學(xué)校托管合同協(xié)議
- 2025年鄭州鐵路職業(yè)技術(shù)學(xué)院高職單招高職單招英語2016-2024歷年頻考點(diǎn)試題含答案解析
- 2022級(jí)中餐烹飪(烹飪工藝與營(yíng)養(yǎng)) 專業(yè)校企合作人才培養(yǎng)方案(五年制)
- 內(nèi)蒙古呼和浩特市2023-2024學(xué)年高一上學(xué)期期末考試語文試題(解析版)
- 期末真題沖刺特訓(xùn)卷-2024-2025學(xué)年語文四年級(jí)上冊(cè)
- 2025年小米集團(tuán)招聘筆試參考題庫含答案解析
評(píng)論
0/150
提交評(píng)論