版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025年云南省昆明市官渡一中高二上數(shù)學(xué)期末經(jīng)典模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假2.已知向量為平面的法向量,點(diǎn)在內(nèi),點(diǎn)在外,則點(diǎn)到平面的距離為()A. B.C. D.3.離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或4.已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),則的取值范圍是()A. B.C. D.5.如圖是拋物線形拱橋,當(dāng)水面在n時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.6.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.7.若直線與圓相交于、兩點(diǎn),且(其中為原點(diǎn)),則的值為()A. B.C. D.8.在平面直角坐標(biāo)系中,線段的兩端點(diǎn),分別在軸正半軸和軸正半軸上滑動,若圓上存在點(diǎn)是線段的中點(diǎn),則線段長度的最小值為()A.4 B.6C.8 D.109.已知A為拋物線C:y2=2px(p>0)上一點(diǎn),點(diǎn)A到C的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.910.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù)1,3,6,10,…構(gòu)成的數(shù)列的第n項(xiàng),則的值為()A.1225 B.1275C.1326 D.136211.已知點(diǎn)在拋物線:上,點(diǎn)為拋物線的焦點(diǎn),,點(diǎn)P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.12.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在報名的3名男教師和3名女教師中,選取3人參加義務(wù)獻(xiàn)血,要求男、女教師都有,則不同的選取方法數(shù)為__________.(結(jié)果用數(shù)值表示)14.已知等比數(shù)列中,則q=___15.如圖,在等腰直角中,,為半圓弧上異于,的動點(diǎn),當(dāng)半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點(diǎn),使得;②存在點(diǎn),使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J(rèn)為正確的結(jié)果的序號).16.已知數(shù)列中,.若為等差數(shù)列,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓的左頂點(diǎn),過右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)直線軸時,.(1)求橢圓的方程;(2)記,的面積分別為,求的取值范圍;(3)若的重心在圓上,求直線的斜率.18.(12分)已知點(diǎn)為橢圓C的右焦點(diǎn),P為橢圓上一點(diǎn),且(O為坐標(biāo)原點(diǎn)),.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),求弦的取值范圍.19.(12分)已知拋物線過點(diǎn),是拋物線的焦點(diǎn),直線交拋物線于另一點(diǎn),為坐標(biāo)原點(diǎn).(1)求拋物線的方程和焦點(diǎn)的坐標(biāo);(2)拋物線的準(zhǔn)線上是否存在點(diǎn)使,若存在請求出點(diǎn)坐標(biāo),若不存在請說明理由.20.(12分)甲、乙兩人獨(dú)立地對某一目標(biāo)射擊,已知甲、乙能擊中的概率分別為,求:(1)甲、乙恰好有一人擊中的概率;(2)目標(biāo)被擊中的概率21.(12分)已知橢圓的離心率為,右焦點(diǎn)為,斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.(1)求橢圓的方程;(2)求的面積.22.(10分)在平面直角坐標(biāo)系中,△的三個頂點(diǎn)分別是點(diǎn).(1)求△的外接圓O的標(biāo)準(zhǔn)方程;(2)過點(diǎn)作直線平行于直線,判斷直線與圓O的位置關(guān)系,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因?yàn)槌闪?,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.2、A【解析】先求出向量,再利用空間向量中點(diǎn)到平面的距離公式即可求解.【詳解】解:由題知,點(diǎn)在內(nèi),點(diǎn)在外,所以又向量為平面的法向量所以點(diǎn)到平面的距離為:故選:A.3、B【解析】試題解析:當(dāng)焦點(diǎn)在x軸上:當(dāng)焦點(diǎn)在y軸上:考點(diǎn):本題考查橢圓的標(biāo)準(zhǔn)方程點(diǎn)評:解決本題的關(guān)鍵是焦點(diǎn)位置不同方程不同4、B【解析】當(dāng)直線斜率存在時,設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,進(jìn)而求得取值范圍,當(dāng)斜率不存在是,可得,兩點(diǎn)坐標(biāo),進(jìn)而可得的值.【詳解】當(dāng)直線斜率存在時,設(shè)直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當(dāng)直線斜率不存在時,直線方程為,所以,,,綜上所述:,故選:B.5、D【解析】由題建立平面直角坐標(biāo)系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標(biāo)系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當(dāng)水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.6、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.7、D【解析】分析出為等腰直角三角形,可得出原點(diǎn)到直線的距離,利用點(diǎn)到直線的距離公式可得出關(guān)于的等式,由此可解得的值.【詳解】圓的圓心為原點(diǎn),由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點(diǎn)到直線的距離公式可得,解得.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查利用圓周角求參數(shù),解題的關(guān)鍵在于求出弦心距,再利用點(diǎn)到直線的距離公式列方程求解參數(shù).8、C【解析】首先求點(diǎn)的軌跡,將問題轉(zhuǎn)化為兩圓有交點(diǎn),即根據(jù)兩圓的位置關(guān)系,求參數(shù)的取值范圍.【詳解】設(shè),,的中點(diǎn)為,則,故點(diǎn)的軌跡是以原點(diǎn)為圓心,為半徑的圓,問題轉(zhuǎn)化為圓與圓有交點(diǎn),所以,,即,解得:,所以線段長度的最小值為.故選:C9、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設(shè)拋物線的焦點(diǎn)為F,由拋物線的定義知,即,解得.故選:C.【點(diǎn)晴】本題主要考查利用拋物線的定義計(jì)算焦半徑,考查學(xué)生轉(zhuǎn)化與化歸思想,是一道容易題.10、B【解析】觀察前4項(xiàng)可得,從而可求得結(jié)果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B11、D【解析】由拋物線定義可得,注意開口方向.詳解】設(shè)∵點(diǎn)P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.12、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項(xiàng).【詳解】由得,所以,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離為1,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】由題設(shè),選取方式有兩男教師一女教師或兩女教師一男教師,應(yīng)用組合數(shù)求出選取方法數(shù).【詳解】選取方式有:選兩男教師一女教師或選兩女教師一男教師,∴不同的選取方法有:種.故答案為:18.14、3【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù)等比數(shù)列的通項(xiàng)公式求得答案.【詳解】等比數(shù)列中,故,,所以,故答案為:315、①②④【解析】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時,可證得四邊形ABCD為正方形即可判斷①;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點(diǎn)時,直線DB與平面ABC所成角的最大,作圖分析驗(yàn)證可判斷④.【詳解】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時,連結(jié)BD,交AC于,則為AC中點(diǎn),此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時,此時有:平面ABC,,又因?yàn)?,所以平面CDB,所以,故②正確;③,當(dāng)平面平面ABC,且D為中點(diǎn)時,h有最大值;當(dāng)A,B,C,D四點(diǎn)共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點(diǎn)時,直線DB與平面ABC所成角的最大,取AC中點(diǎn)O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.16、【解析】利用等差中項(xiàng)求解即可【詳解】由為等差數(shù)列,則,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)根據(jù)已知條件得到,,即可得到橢圓的方程.(2)首先設(shè)直線為,與橢圓聯(lián)立得到,根據(jù)得到的范圍,從而得到的范圍.(3)設(shè)重心,根據(jù)重心性質(zhì)得到,,再代入求解即可.小問1詳解】因?yàn)樽箜旤c(diǎn),所以,根據(jù),可得,解得,所以;【小問2詳解】設(shè)直線為,則,則,,那么,根據(jù)解得,所以.【小問3詳解】設(shè)重心,則:,,所以,所以,即所求直線的斜率為.18、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經(jīng)過點(diǎn)的直線l分為斜率不存在和存在兩種情況,分別去求弦,再去求其取值范圍即可.【小問1詳解】由題意得.記左焦點(diǎn)為,,則,,解得.由橢圓定義得:,則,所以橢圓C的方程為:.【小問2詳解】①當(dāng)直線l的斜率不存在時,.②當(dāng)直線l的斜率存在時,設(shè)斜率為k,則l的方程為.聯(lián)立橢圓與直線的方程(由于點(diǎn)在橢圓內(nèi),∴成立),且,,令,則,,,由得,綜上所述,弦的取值范圍為.【點(diǎn)睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程的設(shè)法時,務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形19、(1)拋物線的方程為,焦點(diǎn)坐標(biāo)為(2)存在,且【解析】(1)根據(jù)點(diǎn)坐標(biāo)求得,進(jìn)而求得拋物線的方程和焦點(diǎn)的坐標(biāo).(2)設(shè),根據(jù)列方程,化簡求得的坐標(biāo).【小問1詳解】將代入得,所以拋物線的方程為,焦點(diǎn)坐標(biāo)為.【小問2詳解】存在,理由如下:直線的方程為,或,即.拋物線的準(zhǔn)線,設(shè),,即,所以.即存在點(diǎn)使.20、(1);(2).【解析】(1)分為甲擊中且乙沒有擊中,和乙擊中且甲沒有擊中兩種情況,進(jìn)而根據(jù)獨(dú)立事件概率公式求得答案;(2)先考慮甲乙都沒有擊中,進(jìn)而根據(jù)對立事件概率公式和獨(dú)立事件概率公式求得答案.【小問1詳解】設(shè)甲、乙分別擊中目標(biāo)為事件,,易知,相互獨(dú)立且,,甲、乙恰好有一人擊中的概率為.【小問2詳解】目標(biāo)被擊中的概率為.21、(1)(2)【解析】(1)根據(jù)橢圓的簡單幾何性質(zhì)知,又,寫出橢圓的方程;(2)先斜截式設(shè)出直線,聯(lián)立方程組,根據(jù)直線與圓錐曲線的位置關(guān)系,可得出中點(diǎn)為的坐標(biāo),再根據(jù)△為等腰三角形知,從而得的斜率為,求出,寫出:,并計(jì)算,再根據(jù)點(diǎn)到直線距離公式求高,即可計(jì)算出面積【詳解】(1)由已知得,,解得,又,所以橢圓的方程為(2)設(shè)直線的方程為,由得,①設(shè)、的坐標(biāo)分別為,(),中點(diǎn)為,則,,因?yàn)槭堑妊鞯牡走叄运缘男甭蕿?,解得,此時方程①為解得,,所以,,所以,此時,點(diǎn)到直線:距離,所以△的面積考點(diǎn):1、橢圓的簡單幾何性質(zhì);2、直線和橢圓的位置關(guān)系;3、橢圓的標(biāo)準(zhǔn)方程;4、點(diǎn)到直線的距離.【思路點(diǎn)晴】本題主要考查的是橢圓的方程,橢圓的簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,點(diǎn)到直線的距離,屬于難題.解決本類問題時,注意使用橢圓的幾何性質(zhì),求得橢圓的標(biāo)準(zhǔn)方程;求三角形的面積需要求出底和高,在求解過程中要充分利用三角形是等腰三角形,進(jìn)而知道定點(diǎn)與弦中點(diǎn)的連線垂直,這是解決問題的關(guān)鍵22、(1);(2)直線與圓O相切,理由見解析.【解析】(1)法1:設(shè)外接圓為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于大數(shù)據(jù)的閱讀趨勢預(yù)測
- 2025年海南省公需課學(xué)習(xí)-醫(yī)療衛(wèi)生服務(wù)體系規(guī)劃1119
- 2025年八大特殊作業(yè)安全填空題試題庫及答案(共50題)
- 2025年新疆初中語文題庫及答案
- 2025年策畫師游戲測試題及答案
- 租賃公司租房合同范本
- 超市員工安全 合同范本
- 資產(chǎn)收購公司合同范本
- 因政策終止合同范本
- 荒地旱地出租合同范本
- 加盟2025年房地產(chǎn)經(jīng)紀(jì)協(xié)議合同
- 2025至2030中國商業(yè)攝影行業(yè)市場發(fā)展分析及發(fā)展前景預(yù)測與投資風(fēng)險報告
- 地球系統(tǒng)多源數(shù)據(jù)融合-洞察及研究
- 香水銷售知識培訓(xùn)內(nèi)容課件
- 工業(yè)產(chǎn)品早期可制造性評估標(biāo)準(zhǔn)
- DB45-T 2757.1-2023 交通運(yùn)輸行業(yè)安全風(fēng)險評估規(guī)范 第1部分:總則
- 3.6運(yùn)動和能量課件-科學(xué)三年級上冊教科版-1
- 2025年酒店行業(yè)全球酒店管理與酒店服務(wù)創(chuàng)新研究報告
- 2025年及未來5年中國銅鋁復(fù)合板帶行業(yè)市場供需格局及行業(yè)前景展望報告
- Unit6Ouranimalfriends單詞詞匯(課件)-Joinin外研劍橋英語四年級上冊
- 第9課 約束教學(xué)設(shè)計(jì)-2025-2026學(xué)年初中日語人教版2024七年級全一冊-人教版
評論
0/150
提交評論