版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025年北京市19中高二上數(shù)學(xué)期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個位數(shù)字為葉).考慮以下結(jié)論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標準差小于乙地該月時的氣溫的標準差;④甲地該月時的氣溫的標準差大于乙地該月時的氣溫的標準差.其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為()A.①③ B.①④C.②③ D.②④2.已知變量x,y具有線性相關(guān)關(guān)系,它們之間的一組數(shù)據(jù)如下表所示,若y關(guān)于x的線性回歸方程為,則m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.33.已知拋物線過點,點為平面直角坐標系平面內(nèi)一點,若線段的垂直平分線過拋物線的焦點,則點與原點間的距離的最小值為()A. B.C. D.4.方程表示的曲線是A.兩條直線 B.兩條射線C.兩條線段 D.一條直線和一條射線5.拋物線的準線方程是,則a的值為()A.4 B.C. D.6.按照小李的閱讀速度,他看完《三國演義》需要40個小時.2021年12月20日,他開始閱讀《三國演義》,當天他讀了20分鐘,從第二天開始,他每天閱讀此書的時間比前一天增加10分鐘,則他恰好讀完《三國演義》的日期為()A.2022年1月8日 B.2022年1月9日C.2022年1月10日 D.2022年1月11日7.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤”意思是:“現(xiàn)有一根金杖,長5尺,頭部1尺,重4斤;尾部1尺,重2斤;若該金杖從頭到尾每一尺重量構(gòu)成等差數(shù)列,其中重量為,則的值為()A.4 B.12C.15 D.188.已知直線平分圓C:,則最小值為()A.3 B.C. D.9.已知拋物線:,焦點為,若過的直線交拋物線于、兩點,、到拋物線準線的距離分別為3、7,則長為A.3 B.4C.7 D.1010.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)11.拋物線的焦點坐標是A. B.C. D.12.如圖在平行六面體中,與的交點記為.設(shè),,,則下列向量中與相等的向量是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是一個邊長為2的正方體的平面展開圖,在這個正方體中,則下列說法中正確的序號是___________.①直線與直線垂直;②直線與直線相交;③直線與直線平行;④直線與直線異面;14.設(shè)橢圓標準方程為,則該橢圓的離心率為______15.曲線在處的切線斜率為___________.16.已知函數(shù),___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓與x軸交于A,B兩點,P是該圓上任意一點,AP,PB的延長線分別交直線于M,N兩點.(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當圓C面積最小時,求此時圓C的方程.18.(12分)已知等差數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前項和19.(12分)已知等比數(shù)列的前n項和為,,(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個等差數(shù)列,記插入的這n個數(shù)之和為,求數(shù)列的前n項和20.(12分)已知函數(shù),,其中為自然對數(shù)的底數(shù).(1)若為的極值點,求的單調(diào)區(qū)間和最大值;(2)是否存在實數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.21.(12分)已知橢圓的左、右焦點分別是,點P是橢圓C上任一點,若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點,若過點且斜率不為0的直線交C于M,N兩點,證明:直線與的交點在一條定直線上22.(10分)設(shè)橢圓的左、右焦點分別為,,離心率為,短軸長為.(1)求橢圓的標準方程;(2)設(shè)左、右頂點分別為、,點在橢圓上(異于點、),求的值;(3)過點作一條直線與橢圓交于兩點,過作直線的垂線,垂足為.試問:直線與是否交于定點?若是,求出該定點的坐標,否則說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標準差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標準差為由莖葉圖知乙地該月時的平均氣溫為,標準差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標準差小于甲的標準差,故④正確,故正確的是①④,故選:B2、A【解析】先求得樣本中心,代入回歸方程,即可得答案.【詳解】由題意得,又樣本中心在回歸方程上,所以,解得.故選:A3、B【解析】將點的坐標代入拋物線的方程,求出的值,可求得拋物線的方程,求出的坐標,分析可知點的軌跡是以點為圓心,半徑為的圓,利用圓的幾何性質(zhì)可求得點與原點間的距離的最小值.【詳解】將點的坐標代入拋物線的方程得,可得,故拋物線的方程為,易知點,由中垂線的性質(zhì)可得,則點的軌跡是以點為圓心,半徑為的圓,故點的軌跡方程為,如下圖所示:由圖可知,當點、、三點共線且在線段上時,取最小值,且.故選:B.4、D【解析】由,得2x+3y?1=0或.即2x+3y?1=0(x?3)為一條射線,或x=4為一條直線.∴方程表示的曲線是一條直線和一條射線.故選D.點睛:在直角坐標系中,如果某曲線C(看作點的集合或適合某種條件的點的軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點那么,這個方程叫做曲線的方程,這條曲線叫做方程的曲線在求解方程時要注意變量范圍.5、C【解析】先求得拋物線的標準方程,可得其準線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標準方程為,準線方程為,又準線方程是,所以,所以.故選:C6、B【解析】由等差數(shù)列前n項和列不等式求解即可.【詳解】由題知,每天的讀書時間為等差數(shù)列,首項為20,公差為10,記n天讀完.則40小時=2400分鐘,令,得或(舍去),故,即第21天剛好讀完,日期為2022年1月9日.故選:B7、C【解析】先求出公差,再利用公式可求總重量.【詳解】設(shè)頭部一尺重量為,其后每尺重量依次為,由題設(shè)有,,故公差為.故中間一尺的重量為所以這5項和為.故選:C.8、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.9、D【解析】利用拋物線的定義,把的長轉(zhuǎn)化為點到準線的距離的和得解【詳解】解:拋物線:,焦點為,過的直線交拋物線于、兩點,、到拋物線準線的距離分別為3、7,則故選D【點睛】本題考查拋物線定義的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.10、A【解析】構(gòu)造函數(shù)h(x)=f(x)g(x),由已知得當x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,得到f(x)g(x)<0不等式的解集【詳解】設(shè)h(x)=f(x)g(x),因為當x<0時,f(x)g(x)+f(x)g(x)<0,所以當x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,因為f(﹣1)=0,所以函數(shù)y=h(x)的大致圖象如下:所以等式f(x)g(x)<0的解集為(﹣1,0)∪(1,+∞)故選A【點睛】本題考查導(dǎo)數(shù)乘法法則、導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系;奇函數(shù)的單調(diào)性在對稱區(qū)間上一致,屬于中檔題11、D【解析】根據(jù)拋物線的焦點坐標為可知,拋物線即的焦點坐標為,故選D.考點:拋物線的標準方程及其幾何性質(zhì).12、B【解析】利用空間向量的加法和減法法則可得出關(guān)于、、的表達式.【詳解】故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①④【解析】畫出正方體,,,故,①正確,根據(jù)相交推出矛盾得到②錯誤,根據(jù),與相交得到③錯誤,排除共面的情況得到④正確,得到答案.【詳解】如圖所示的正方體中,,,故,①正確;若直線與直線相交,則四點共面,即在平面內(nèi),不成立,②錯誤;,與相交,故直線與直線不平行,③錯誤;,與不平行,故與不平行,若與相交,則四點共面,在平面內(nèi),不成立,故直線與直線異面,④正確;故答案為:①④.14、##【解析】求出、的值,即可求得橢圓的離心率.【詳解】在橢圓中,,,則,因此,該橢圓的離心率為.故答案為:.15、##【解析】首先求得的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率.【詳解】因為函數(shù)的導(dǎo)數(shù)為,所以可得在處的切線斜率,故答案為:16、【解析】直接利用分段函數(shù)的解析式即可求解.【詳解】因為,所以,所以.故答案為:-1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質(zhì),結(jié)合銳角三角函數(shù)定義進行求解即可;(2)根據(jù)題意,結(jié)合基本不等式和圓的標準方程進行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點,所以,圓心在x軸上,所以,因為,,所以有,當P在x軸上方時,直線PB的斜率為:,所以直線PB的方程為:,當P在x軸下方時,直線PB的斜率為:,所以直線PB的方程為:,因此直線PB的方程為或;【小問2詳解】由(1)知:,,所以設(shè)直線的斜率為,因此直線的斜率為,于是直線的方程為:,令,,即直線的方程為:,令,,即,因為同號,所以,當且僅當時取等號,即當時取等號,于是有以線段MN為直徑作圓C,當圓C面積最小時,此時最小,當時,和,中點坐標為:,半徑為,所以圓的方程為:,同理當時,和,中點坐標為:,半徑為,所以圓的方程為:,綜上所述:圓C的方程為.18、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個量的值,即可求得數(shù)列的通項公式;(2)求得,利用裂項相消法可求得.【小問1詳解】解:設(shè)等差數(shù)列公差為,,【小問2詳解】解:,.19、(1);(2)【解析】(1)設(shè)等比數(shù)列公比為q,利用與關(guān)系可求q,在中令n=1可求;(2)根據(jù)等差數(shù)列前n項和公式可求,分析{}的通項公式,利用錯位相減法求其前n項和.【小問1詳解】設(shè)等比數(shù)列的公比為q,由己知,可得,兩式相減可得,即,整理得,可知,已知,令,得,即,解得,故等比數(shù)列的通項公式為;【小問2詳解】由題意知在與之間插入n個數(shù),這個數(shù)組成以為首項的等差數(shù)列,∴,設(shè){}前n項和為,①①×3:②①-②:20、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點求得,進而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對導(dǎo)函數(shù),分與進行討論,得函數(shù)的單調(diào)性進而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當時,單調(diào)遞增,得的最大值是,解得,舍去;②時,由,即,當,即時,∴時,;時,;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當,即時,在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時.【點睛】本題主要考查了函數(shù)的導(dǎo)數(shù)在求解函數(shù)的單調(diào)性及求解函數(shù)的最值中的應(yīng)用,還考查了函數(shù)的最值求解與分類討論的應(yīng)用,解題時要認真審題,注意挖掘題設(shè)中的條件.21、(1);(2)證明見解析.【解析】(1)用待定系數(shù)法求出橢圓的方程;(2)設(shè)直線MN的方程為x=my+1,設(shè),用“設(shè)而不求法”表示出.由直線AM的方程為,直線BN的方程為,聯(lián)立,解得:,即可證明直線AM與BN的交點在直線上.【小問1詳解】由題意可得:,解得:,所以C的方程為.【小問2詳解】由(1)得A(-2,0),B(2,0),F2(1,0),設(shè)直線MN的方程為x=my+1.設(shè),由,消去y得:,所以.所以.因為直線AM的方程為,直線BN的方程為,二者聯(lián)立,有,所以,解得:,直線AM與BN的交點在直線上.【點睛】(1)待定系數(shù)法可以求二次曲線的標準方程;(2)"設(shè)而不求"是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.22、(1);(2);(3)是,.【解析】(1)由題意,列出所滿足的等量關(guān)系式,結(jié)合橢圓中的關(guān)系,求得,從而求得橢圓的方程;(2)寫出,設(shè),利用斜率坐標公式求得兩直線斜率,結(jié)合點在橢圓上,得出,從而求得結(jié)果;(3)設(shè)直線的方程為:,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來五年化學(xué)品氧化鋁行業(yè)直播電商戰(zhàn)略分析研究報告
- 未來五年壓力管路過濾器企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略分析研究報告
- 未來五年定子線圈繞線機行業(yè)跨境出海戰(zhàn)略分析研究報告
- 未來五年蔥蒜類蔬菜行業(yè)直播電商戰(zhàn)略分析研究報告
- 四年級數(shù)學(xué)(簡便運算)計算題專項練習(xí)與答案
- 程序員面試全攻略技術(shù)問題解析
- 公開課教案教學(xué)設(shè)計人教初中語文七上走一步再走一步三
- 《男生和女生》新部編版教案
- 教科版小學(xué)科學(xué)六年級上冊教案全(2025-2026學(xué)年)
- 北師大版歷史九年級下冊追憶列寧教案
- 2025年廣西繼續(xù)教育公需科目考試試題和答案
- 醫(yī)院治安防范措施課件
- 三國志11全人物能力數(shù)值表
- 個人借條電子版模板
- 彈箭空氣動力學(xué)智慧樹知到答案章節(jié)測試2023年南京理工大學(xué)
- 工業(yè)加熱爐溫度控制系統(tǒng)
- 課程設(shè)計-邏輯信號電平測試器的設(shè)計
- 醫(yī)療質(zhì)量與安全管理小組架構(gòu)及職責(zé)
- GA/T 744-2013汽車車窗玻璃遮陽膜
- 顏真卿書法欣賞課件
- DJAM碟式射流曝氣器
評論
0/150
提交評論