湖南省長(zhǎng)沙市周南梅溪湖中學(xué)2025-2026學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
湖南省長(zhǎng)沙市周南梅溪湖中學(xué)2025-2026學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
湖南省長(zhǎng)沙市周南梅溪湖中學(xué)2025-2026學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
湖南省長(zhǎng)沙市周南梅溪湖中學(xué)2025-2026學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
湖南省長(zhǎng)沙市周南梅溪湖中學(xué)2025-2026學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省長(zhǎng)沙市周南梅溪湖中學(xué)2025-2026學(xué)年數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線恒過(guò)定點(diǎn)()A. B.C. D.2.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.3.“”是“直線與直線垂直”的A.充分必要條件 B.充分非必要條件C.必要不充分條件 D.既不充分也不必要條件4.過(guò)雙曲線的右焦點(diǎn)F作一條漸近線的垂線,垂足為M,且FM的中點(diǎn)A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.5.在空間直角坐標(biāo)系中,,,若∥,則x的值為()A.3 B.6C.5 D.46.中國(guó)明代商人程大位對(duì)文學(xué)和數(shù)學(xué)頗感興趣,他于60歲時(shí)完成杰作《直指算法統(tǒng)宗》.這是一本風(fēng)行東亞的數(shù)學(xué)名著,該書(shū)A.76石 B.77石C.78石 D.79石7.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關(guān)系不確定8.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.459.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.110.已知數(shù)列,,則下列說(shuō)法正確的是()A.此數(shù)列沒(méi)有最大項(xiàng) B.此數(shù)列的最大項(xiàng)是C.此數(shù)列沒(méi)有最小項(xiàng) D.此數(shù)列的最小項(xiàng)是11.已知,,若,則()A.9 B.6C.5 D.312.過(guò)點(diǎn)P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個(gè)公共點(diǎn),這樣的直線l共有A.1條 B.2條C.3條 D.4條二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值為_(kāi)_____.14.已知橢圓交軸于A,兩點(diǎn),點(diǎn)是橢圓上異于A,的任意一點(diǎn),直線,分別交軸于點(diǎn),,則為定值.現(xiàn)將雙曲線與橢圓類(lèi)比得到一個(gè)真命題:若雙曲線交軸于A,兩點(diǎn),點(diǎn)是雙曲線上異于A,的任意一點(diǎn),直線,分別交軸于點(diǎn),,則為定值___15.曲線在點(diǎn)處的切線方程為_(kāi)_________16.若球的大圓的面積為,則該球的表面積為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱錐中,底面,.點(diǎn),,分別為棱,,的中點(diǎn),是線段的中點(diǎn),,(1)求證:平面;(2)求二面角的正弦值;(3)已知點(diǎn)在棱上,且直線與直線所成角的余弦值為,求線段的長(zhǎng)18.(12分)已知橢圓焦距為,點(diǎn)在橢圓C上(1)求橢圓C的方程;(2)過(guò)點(diǎn)的直線與C交于M,N兩點(diǎn),點(diǎn)R是直線上任意一點(diǎn),設(shè)直線的斜率分別為,若,求的方程19.(12分)一個(gè)小島的周?chē)协h(huán)島暗礁,暗礁分布在以小島中心為圓心,半徑為的圓形區(qū)域內(nèi)(圓形區(qū)域的邊界上無(wú)暗礁),已知小島中心位于輪船正西處,港口位于小島中心正北處.(1)若,輪船直線返港,沒(méi)有觸礁危險(xiǎn),求的取值范圍?(2)若輪船直線返港,且必須經(jīng)過(guò)小島中心東北方向處補(bǔ)水,求的最小值.20.(12分)如圖,直四棱柱的底面是菱形,,,直線與平面ABCD所成角的正弦值為.E,F(xiàn)分別為、的中點(diǎn).(1)求證:平面BED;(2)求直線與平面FAC所成角的正弦值.21.(12分)已知數(shù)列的首項(xiàng),且滿(mǎn)足.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別是,,離心率,請(qǐng)?jiān)購(gòu)南旅鎯蓚€(gè)條件中選擇一個(gè)作為已知條件,完成下面的問(wèn)題:①橢圓C過(guò)點(diǎn);②以點(diǎn)為圓心,3為半徑的圓與以點(diǎn)為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C上(只能從①②中選擇一個(gè)作為已知)(1)求橢圓C的方程;(2)已知過(guò)點(diǎn)的直線l交橢圓C于M,N兩點(diǎn),點(diǎn)N關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為,且,M,三點(diǎn)構(gòu)成一個(gè)三角形,求證:直線過(guò)定點(diǎn),并求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】將直線方程變形得,再根據(jù)方程即可得答案.【詳解】解:由得到:,∴直線恒過(guò)定點(diǎn)故選:A2、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B3、B【解析】先由兩直線垂直求出的值,再由充分條件與必要條件的概念,即可得出結(jié)果.【詳解】因?yàn)橹本€與直線垂直,則,即,解得或;因此由“”能推出“直線與直線垂直”,反之不能推出,所以“”是“直線與直線垂直”的充分非必要條件.故選B【點(diǎn)睛】本題主要考查命題充分不必要條件的判定,熟記充分條件與必要條件的概念,以及兩直線垂直的判定條件即可,屬于常考題型.4、A【解析】根據(jù)題意可表示出漸近線方程,進(jìn)而可知的斜率,表示出直線方程,求出的坐標(biāo)進(jìn)而求得A點(diǎn)坐標(biāo),代入雙曲線方程整理求得和的關(guān)系式,進(jìn)而求得離心率【詳解】:由題意設(shè)相應(yīng)的漸近線:,則根據(jù)直線的斜率為,則的方程為,聯(lián)立雙曲線漸近線方程求出,則,,則的中點(diǎn),把中點(diǎn)坐標(biāo)代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:5、D【解析】依題意可得,即可得到方程組,解得即可;【詳解】解:依題意,即,所以,解得故選:D6、C【解析】設(shè)出未知數(shù),列出方程組,求出答案.【詳解】設(shè)甲、乙、丙分得的米數(shù)為x+d,x,x-d,則,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故選:C7、C【解析】利用向量法判斷平面與平面的位置關(guān)系.【詳解】因?yàn)槠矫?,的法向量分別為,,所以,即不垂直,則,不垂直,因?yàn)?,即即不平行,則,不平行,所以,相交但不垂直,故選:C8、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,則.故選:B.9、B【解析】由可得拋物線標(biāo)椎方程為:,由焦點(diǎn)和準(zhǔn)線方程即可得解.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,所以拋物線的焦點(diǎn)為,準(zhǔn)線方程為,所以焦點(diǎn)到準(zhǔn)線的距離為,故選:B【點(diǎn)睛】本題考了拋物線標(biāo)準(zhǔn)方程,考查了焦點(diǎn)和準(zhǔn)線相關(guān)基本量,屬于基礎(chǔ)題.10、B【解析】令,則,,然后利用函數(shù)的知識(shí)可得答案.【詳解】令,則,當(dāng)時(shí),當(dāng)時(shí),,由雙勾函數(shù)的知識(shí)可得在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)即時(shí),取得最大值,所以此數(shù)列的最大項(xiàng)是,最小項(xiàng)為故選:B11、D【解析】根據(jù)空間向量垂直的坐標(biāo)表示即可求解.【詳解】.故選:D.12、B【解析】利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點(diǎn)P(2,1)在漸近線y=x上,又雙曲線的右頂點(diǎn)為A(2,0),如圖所示.滿(mǎn)足條件的直線l有兩條:x=2,y-1=-(x-2)【點(diǎn)睛】該題考查的是有關(guān)直線與雙曲線的公共點(diǎn)有一個(gè)的條件,結(jié)合雙曲線的性質(zhì),結(jié)合圖形,得出結(jié)果,屬于中檔題目.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】利用“1”的妙用,運(yùn)用基本不等式即可求解.【詳解】∵,即,∴又∵,,∴,當(dāng)且僅當(dāng)且,即,時(shí),等號(hào)成立,則的最小值為4.故答案為:.14、-【解析】由雙曲線的方程可得,的坐標(biāo),設(shè)的坐標(biāo),代入雙曲線的方程可得的橫縱坐標(biāo)的關(guān)系,求出直線,的方程,令,分別求出,的縱坐標(biāo),求出的表達(dá)式,整理可得為定值【詳解】由雙曲線的方程可得,,設(shè),則,可得,直線的方程為:,令,則,可得,直線的方程為,令,可得,即,∴,,,故答案為:-另解:雙曲線方程化為,只是將的替換為-,故答案也是只需將中的替換為-即可.故答案為:-.15、【解析】先驗(yàn)證點(diǎn)在曲線上,再求導(dǎo),代入切線方程公式即可【詳解】由題,當(dāng)時(shí),,故點(diǎn)在曲線上求導(dǎo)得:,所以故切線方程為故答案為:16、【解析】設(shè)球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設(shè)球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎(chǔ)知識(shí).考查用空間向量解決立體幾何問(wèn)題的方法.考查空間想象能力、運(yùn)算求解能力和推理論證能力.首先要建立空間直角坐標(biāo)系,寫(xiě)出相關(guān)點(diǎn)的坐標(biāo),證明線面平行只需求出平面的法向量,計(jì)算直線對(duì)應(yīng)的向量與法向量的數(shù)量積為0,求二面角只需求出兩個(gè)半平面對(duì)應(yīng)的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點(diǎn),分別以,,方向?yàn)閤軸、y軸、z軸正方向建立空間直角坐標(biāo)系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量,則,即.不妨設(shè),可得.又=(1,2,),可得.因?yàn)槠矫鍮DE,所以MN//平面BDE.(2)解:易知為平面CEM的一個(gè)法向量.設(shè)為平面EMN的法向量,則,因?yàn)?,,所?不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設(shè)AH=h(),則H(0,0,h),進(jìn)而可得,.由已知,得,整理得,解得,或.所以,線段AH的長(zhǎng)為或.【考點(diǎn)】直線與平面平行、二面角、異面直線所成角【名師點(diǎn)睛】空間向量是解決空間幾何問(wèn)題的銳利武器,不論是求空間角、空間距離還是證明線面關(guān)系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準(zhǔn),特別是借助平面的法向量求線面角,二面角或點(diǎn)到平面的距離都很容易.18、(1);(2).【解析】(1)由焦距為解出,再把點(diǎn)代入橢圓方程中,即可解出答案.(2)根據(jù)題意求出當(dāng)直線與軸重合時(shí),由求出值,即求出的方程為.故只需證:當(dāng)直線與軸不重合時(shí),上任意一點(diǎn)均使,設(shè)出直線方程與橢圓進(jìn)行聯(lián)立,化簡(jiǎn)得證,即可得到答案.【小問(wèn)1詳解】.由于點(diǎn)在橢圓C上,則故橢圓C的方程為.【小問(wèn)2詳解】當(dāng)直線與軸重合時(shí),是橢圓的左右頂點(diǎn),不妨設(shè),設(shè),則是上的任意一點(diǎn),即方程對(duì)任意實(shí)數(shù)都成立,此時(shí)的方程為.故只需證:當(dāng)直線與軸不重合時(shí),上任意一點(diǎn)均使即可,設(shè)直線的方程為,,設(shè)則由y得證.故的方程為.19、(1)(2)120【解析】(1)建立平面直角坐標(biāo)系設(shè)直線方程,根據(jù)點(diǎn)到直線的距離公式可得;(2)先求補(bǔ)水點(diǎn)的坐標(biāo),根據(jù)直線過(guò)該點(diǎn),結(jié)合所求,根據(jù)基本不等式可得.【小問(wèn)1詳解】根據(jù)題意,以小島中心為原點(diǎn),建立平面直角坐標(biāo)系,當(dāng)時(shí),則輪船返港的直線為,因?yàn)闆](méi)有觸礁危險(xiǎn),所以原點(diǎn)到的距離,解得.【小問(wèn)2詳解】根據(jù)題意可得,,點(diǎn)C在直線上,故點(diǎn)C,設(shè)輪船返港的直線是,則,所以.當(dāng)且僅當(dāng)時(shí)取到最小值.20、(1)證明見(jiàn)解析(2)【解析】(1)證明垂直于平面BED內(nèi)的兩條相交直線,即可得到答案;(2)分別以O(shè)B,OC,OE為x軸,y軸,z軸,建立直角坐標(biāo)系,平面FAC的一個(gè)法向量為,代入向量的夾角公式,即可得到答案;【小問(wèn)1詳解】∵ABCD為菱形,∴,設(shè)AC與BD的交點(diǎn)為O,則OE為的中位線,∴.由題意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小問(wèn)2詳解】∵ABCD為菱形,,∴為正三角形,∴.∵平面ABCD,∴與平面ABCD所成角,由,得,所以.如圖,分別以O(shè)B,OC,OE為x軸,y軸,z軸,建立直角坐標(biāo)系,則,,,,,,,設(shè)平面FAC的法向量為,則由可得,取,故可得平面FAC的一個(gè)法向量為,記直線與平面FAC的夾角為,則21、(1)證明見(jiàn)解析(2)【解析】(1)化簡(jiǎn)得到,由此證得數(shù)列為等差數(shù)列.(2)先求得,然后利用錯(cuò)位相減求和法求得.【小問(wèn)1詳解】.又?jǐn)?shù)列是以1為首項(xiàng),4為公差等差數(shù)列.【小問(wèn)2詳解】由(1)知:,則數(shù)列的通項(xiàng)公式為,則,①,②,①-②得:,,,,.22、(1)(2)證明見(jiàn)解析,【解析】(1)若選①,則由題意可得,解方程組求出,從而可求得橢圓方程,若選②,,再結(jié)合離心率和求出,從而可求得橢圓方程,(2)由題意設(shè)直線MN的方程為,設(shè),,,將直

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論