版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸模擬題目經(jīng)典答案一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點(diǎn)G,點(diǎn)D在BC邊上運(yùn)動(dòng)(不與點(diǎn)G重合),過(guò)點(diǎn)D作DE∥AC交AB于點(diǎn)E.(1)如圖1,點(diǎn)D在線段CG上運(yùn)動(dòng)時(shí),DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)D在線段BG上運(yùn)動(dòng)時(shí),∠BDE的角平分線所在直線與射線AG交于點(diǎn)F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說(shuō)明理由2.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.()若和的度數(shù)改為用字母和來(lái)表示,你能找到與和之間的關(guān)系嗎?請(qǐng)直接寫出你發(fā)現(xiàn)的結(jié)論.3.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動(dòng)AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請(qǐng)說(shuō)明理由.4.如圖,平分,平分,請(qǐng)判斷與的位置關(guān)系并說(shuō)明理由;如圖,當(dāng)且與的位置關(guān)系保持不變,移動(dòng)直角頂點(diǎn),使,當(dāng)直角頂點(diǎn)點(diǎn)移動(dòng)時(shí),問(wèn)與否存在確定的數(shù)量關(guān)系?并說(shuō)明理由.如圖,為線段上一定點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn)且與的位置關(guān)系保持不變,①當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí)(點(diǎn)除外),與有何數(shù)量關(guān)系?猜想結(jié)論并說(shuō)明理由.②當(dāng)點(diǎn)在射線的反向延長(zhǎng)線上運(yùn)動(dòng)時(shí)(點(diǎn)除外),與有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說(shuō)明理由.5.已知在中,,點(diǎn)在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當(dāng)點(diǎn)在上時(shí),求度數(shù);(3)將在直線上平移,當(dāng)以為頂點(diǎn)的三角形是直角三角形時(shí),直接寫出度數(shù).6.直線與直線垂直相交于點(diǎn)O,點(diǎn)A在直線上運(yùn)動(dòng),點(diǎn)B在直線上運(yùn)動(dòng).(1)如圖1,已知分別是和角的平分線,點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明變化的情況;若不發(fā)生變化,試求出的大?。?)如圖2,已知不平行分別是和的角平分線,又分別是和的角平分線,點(diǎn)在運(yùn)動(dòng)的過(guò)程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出的度數(shù).(3)如圖3,延長(zhǎng)至G,已知的角平分線與的角平分線及反向延長(zhǎng)線相交于,在中,如果有一個(gè)角是另一個(gè)角的3倍,則的度數(shù)為_(kāi)___(直接寫答案)7.如圖1,直線m與直線n相交于O,點(diǎn)A在直線m上運(yùn)動(dòng),點(diǎn)B在直線n上運(yùn)動(dòng),AC、BC分別是∠BAO和∠ABO的角平分線.(1)若∠BAO=50o,∠ABO=40o,求∠ACB的度數(shù);(2)如圖2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點(diǎn)D,點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠ADB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出其度數(shù)(用含α的代數(shù)式表示);(3)如圖3,若直線m與直線n相互垂直,延長(zhǎng)AB至E,已知∠ABO、∠OBE的角平分線與∠BOQ的角平分線及延長(zhǎng)線分別相交于D、F,在△BDF中,如果有一個(gè)角是另一個(gè)角的3倍,請(qǐng)直接寫出∠BAO的度數(shù).8.(想一想)在三角形的三條重要線段(高、中線、角平分線)中,能把三角形面積平分的是三角形的______;(比一比)如圖,已知,點(diǎn)、在直線上,點(diǎn)、在直線上,連接、、、,與相交于點(diǎn),則的面積_______的面積;(填“>”“<”或“=”)(用一用)如圖所示,學(xué)校種植園有一塊四邊形試驗(yàn)田STPQ.現(xiàn)準(zhǔn)備過(guò)點(diǎn)修一條筆直的小路(小路面積忽略不計(jì)),將試驗(yàn)田分成面積相等的兩部分,安排“拾穗班”、“鋤禾班”兩班種植蔬菜,進(jìn)行勞動(dòng)實(shí)踐,王老師提醒同學(xué)們先把四邊形轉(zhuǎn)化為同面積的三角形,再把三角形的面積二等分即可.請(qǐng)你在下圖中畫出小路,并保留作圖痕跡.9.如圖,直線MN∥GH,直線l1分別交直線MN、GH于A、B兩點(diǎn),直線l2分別交直線MN、GH于C、D兩點(diǎn),且直線l1、l2交于點(diǎn)E,點(diǎn)P是直線l2上不同于C、D、E點(diǎn)的動(dòng)點(diǎn).(1)如圖①,當(dāng)點(diǎn)P在線段CE上時(shí),請(qǐng)直寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系:;(2)如圖②,當(dāng)點(diǎn)P在線段DE上時(shí),(1)中的∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系還成立嗎?如果成立,請(qǐng)說(shuō)明成立的理由;如果不成立,請(qǐng)寫出這三個(gè)角之間的數(shù)量關(guān)系,并說(shuō)明理由.(3)如果點(diǎn)P在直線l2上且在C、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,請(qǐng)直接寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系.10.(1)思考探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度數(shù).(2)類比探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠P=n°.求∠A的度數(shù)(用含n的式子表示).(3)拓展遷移:已知,在四邊形ABCD中,四邊形ABCD的內(nèi)角∠ABC與外角∠DCE的平分線所在直線相交于點(diǎn)P,∠P=n°,請(qǐng)畫出圖形;并探究出∠A+∠D的度數(shù)(用含n的式子表示).【參考答案】一、解答題1.(1)①115°;110°;②;理由見(jiàn)解析;(2);理由見(jiàn)解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見(jiàn)解析;(2);理由見(jiàn)解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識(shí);熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.2.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問(wèn)利用即可得出答案,第4問(wèn)利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.3.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動(dòng)AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.4.(1)詳見(jiàn)解析;(2)∠BAE+∠MCD=90°,理由詳見(jiàn)解析;(3)詳見(jiàn)解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)詳見(jiàn)解析;(2)∠BAE+∠MCD=90°,理由詳見(jiàn)解析;(3)詳見(jiàn)解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;(2)過(guò)E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.試題解析:證明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.證明如下:過(guò)E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如圖3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如圖4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.點(diǎn)睛:本題考查了平行線的性質(zhì),根據(jù)題意作出平行線是解答此題的關(guān)鍵.5.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內(nèi)角互補(bǔ),得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用兩直線平行,同旁內(nèi)角互補(bǔ),得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得出結(jié)論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當(dāng)時(shí),如圖3,由(1)知,,;當(dāng)時(shí),如圖4,,點(diǎn),重合,,,由(1)知,,,即當(dāng)以、、為頂點(diǎn)的三角形是直角三角形時(shí),度數(shù)為或.【點(diǎn)睛】此題是三角形綜合題,主要考查了平行線的性質(zhì),三角形的內(nèi)角和定理,角的和差的計(jì)算,求出是解本題的關(guān)鍵.6.(1)不發(fā)生變化,∠AEB=135°;(2)不發(fā)生變化,∠CED=67.5°;(3)60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BA解析:(1)不發(fā)生變化,∠AEB=135°;(2)不發(fā)生變化,∠CED=67.5°;(3)60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BAO和∠ABO的角平分線得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)延長(zhǎng)AD、BC交于點(diǎn)F,根據(jù)直線MN與直線PQ垂直相交于O可得出∠AOB=90°,進(jìn)而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分別是∠BAP和∠ABM的角平分線,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形內(nèi)角和定理可知∠F=45°,再根據(jù)DE、CE分別是∠ADC和∠BCD的角平分線可知∠CDE+∠DCE=112.5°,進(jìn)而得出結(jié)論;(3)由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的3倍分四種情況進(jìn)行分類討論.【詳解】解:(1)∠AEB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分別是∠BAO和∠ABO角的平分線,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不變.延長(zhǎng)AD、BC交于點(diǎn)F.∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分別是∠BAP和∠ABM的角平分線,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分別是∠ADC和∠BCD的角平分線,∴∠CDE+∠DCE=112.5°,∴∠CED=67.5°;(3)∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=90°.在△AEF中,∵有一個(gè)角是另一個(gè)角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍棄);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍棄).∴∠ABO為60°或45°.故答案為:60°或45°.【點(diǎn)睛】本題考查的是平行線的判定和性質(zhì),三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.7.(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過(guò)三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+解析:(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過(guò)三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+∠2+α,∠4=∠2+∠D,再通過(guò)加減消元求出α與∠D的等量關(guān)系.(3)先通過(guò)角平分線的性質(zhì)求出∠FBD為90°,再分類討論有一個(gè)角是另一個(gè)角的3倍的情況求解.【詳解】解:(1)、分別是和的角平分線,,,.(2)的大小不發(fā)生變化,理由如下:如圖,平分,平分,平分,,,,是的外角,,即①,是的外角,,即②,由①②得,解得.(3)如圖,平分,平分,平分,,,,,是的外角,,.①當(dāng)時(shí),,,,.②當(dāng)時(shí),,.,不符合題意.③當(dāng)時(shí),,解得,,.④當(dāng)時(shí),,,解得,,,不符合題意.綜上所述,或.【點(diǎn)睛】本題考查三角形的內(nèi)角和定理與外角定理以及角平分線的性質(zhì),解題關(guān)鍵是熟練掌握三角形內(nèi)角和與外角定理,通過(guò)分類討論求解.8.想一想:中線;比一比:=;用一用:見(jiàn)解析【分析】想一想:三角形中線把三角形底邊等分成兩份,過(guò)頂點(diǎn)向底邊作垂線,高相同;比一比:和共底邊BC,,兩平行線之間的距離相等,即和高相等;用一用:利用解析:想一想:中線;比一比:=;用一用:見(jiàn)解析【分析】想一想:三角形中線把三角形底邊等分成兩份,過(guò)頂點(diǎn)向底邊作垂線,高相同;比一比:和共底邊BC,,兩平行線之間的距離相等,即和高相等;用一用:利用“想一想”中的中線和“比一比”的平行線進(jìn)行面積的二等分.【詳解】想一想:三角形中線把三角形底邊等分成兩份,過(guò)頂點(diǎn)向底邊作垂線,高相同,故能把三角形面積平分的是三角形的中線.比一比:∵∴兩平行線之間的距離相等,即A到BC的距離=D到BC的距離又∵和共底邊BC∴和同底,等高,面積相等.用一用:如圖所示,連接SP,過(guò)Q點(diǎn)作QM∥SP,延長(zhǎng)TP,交QM與點(diǎn)M,連接SP,取TM的中點(diǎn)N.SN即為所求筆直的小路.證明:∵QM∥SP∴∵TM的中點(diǎn)N∴∴【點(diǎn)睛】本題考查中線和平行線的距離.連接三角形的一個(gè)頂點(diǎn)和它所對(duì)的邊的中點(diǎn)的線段叫做三角形的中線.兩條平行線的距離處處相等.9.(1)∠APB=∠NAP+∠HBP;(2)見(jiàn)解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過(guò)P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過(guò)P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解析:(1)∠APB=∠NAP+∠HBP;(2)見(jiàn)解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過(guò)P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過(guò)P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(3)根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】解:(1)如圖①,過(guò)P點(diǎn)作PQ∥GH,∵M(jìn)N∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案為:∠APB=∠NAP+∠HBP;(2)如圖②,過(guò)P點(diǎn)作PQ∥GH,∵M(jìn)N∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如備用圖,∵M(jìn)N∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案為:∠HBP=∠NAP+∠APB.【點(diǎn)睛】此題考查了平行公理的推論:平行于同一條直線的兩直線平行,以及平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ),熟記定理是解題的關(guān)鍵.10.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見(jiàn)解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根據(jù)三角形內(nèi)角和定理可以算出∠A的大小,再根據(jù)角平分線的性解析:(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見(jiàn)解析;∠A+∠
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 門店食品管理制度
- 自考環(huán)境與資源保護(hù)法學(xué)真題模擬及答案
- 養(yǎng)老院情感交流制度
- 企業(yè)員工培訓(xùn)與素質(zhì)提升制度
- 重質(zhì)純堿工復(fù)試評(píng)優(yōu)考核試卷含答案
- 我國(guó)上市公司流動(dòng)性與資本結(jié)構(gòu)的模型構(gòu)建與實(shí)證分析
- 我國(guó)上市公司引入雙層股權(quán)結(jié)構(gòu)的法律路徑探析:基于國(guó)際經(jīng)驗(yàn)與本土實(shí)踐
- 印染燒毛工復(fù)試強(qiáng)化考核試卷含答案
- 裁剪工安全意識(shí)評(píng)優(yōu)考核試卷含答案
- 木作文物修復(fù)師安全實(shí)踐測(cè)試考核試卷含答案
- 鈑金檢驗(yàn)作業(yè)指導(dǎo)書
- 公司安全大講堂活動(dòng)方案
- 2025年江蘇省無(wú)錫市梁溪區(qū)八下英語(yǔ)期末統(tǒng)考模擬試題含答案
- GB/T 42186-2022醫(yī)學(xué)檢驗(yàn)生物樣本冷鏈物流運(yùn)作規(guī)范
- 江蘇省南通市2024-2025學(xué)年高一上學(xué)期1月期末考試數(shù)學(xué)試題
- T/CA 105-2019手機(jī)殼套通用規(guī)范
- 以真育責(zé):小學(xué)生責(zé)任教育在求真理念下的探索與實(shí)踐
- 2019營(yíng)口天成消防JB-TB-TC5120 火災(zāi)報(bào)警控制器(聯(lián)動(dòng)型)安裝使用說(shuō)明書
- 部編版語(yǔ)文六年級(jí)上冊(cè)第一單元綜合素質(zhì)測(cè)評(píng)B卷含答案
- 買賣肉合同樣本
- 2025屆高考語(yǔ)文復(fù)習(xí):以《百合花》為例掌握小說(shuō)考點(diǎn)
評(píng)論
0/150
提交評(píng)論