版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025-2026學年四川內(nèi)江威遠龍會中學數(shù)學高二第一學期期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.程大位是明代著名數(shù)學家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風行宇內(nèi),成為明清之際研習數(shù)學者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)為()A.120 B.84C.56 D.282.設(shè)雙曲線:的左,右焦點分別為,,過的直線與雙曲線的右支交于A,B兩點,若,則雙曲線的離心率為()A.4 B.2C. D.3.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或4.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則5.對于函數(shù),下列說法正確的是()A.的單調(diào)減區(qū)間為B.設(shè),若對,使得成立,則C.當時,D.若方程有4個不等的實根,則6.一質(zhì)點的運動方程為(位移單位:m,時間單位:s),則該質(zhì)點在時的瞬時速度為()A.4 B.12C.15 D.217.已知,,則()A. B.C. D.8.2013年9月7日,總書記在哈薩克斯坦納扎爾巴耶夫大學發(fā)表演講在談到環(huán)境保護問題時提出“綠水青山就是金山銀山”這一科學論新.某市為了改善當?shù)厣鷳B(tài)環(huán)境,2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,從2021年開始每年投入資金比上一年增加10%,到2024年底該市生態(tài)環(huán)境建設(shè)投資總額大約為()(其中,,)A.2559萬元 B.2969萬元C.3005萬元 D.3040萬元9.下列命題中正確的個數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.410.已知等比數(shù)列中,,則這個數(shù)列的公比是()A.2 B.4C.8 D.1611.中國農(nóng)歷的二十四節(jié)氣是中華民族的智慧與傳統(tǒng)文化的結(jié)晶,二十四節(jié)氣歌是以春、夏、秋、冬開始的四句詩.在國際氣象界,二十四節(jié)氣被譽為“中國的第五大發(fā)明”.2016年11月30日,二十四節(jié)氣被正式列入聯(lián)合國教科文組織人類非物質(zhì)文化遺產(chǎn)代表作名錄.某小學三年級共有學生600名,隨機抽查100名學生并提問二十四節(jié)氣歌,只能說出一句的有45人,能說出兩句及以上的有38人,據(jù)此估計該校三年級的600名學生中,對二十四節(jié)氣歌一句也說不出的有()A.17人 B.83人C.102人 D.115人12.已知過拋物線焦點的直線交拋物線于,兩點,則的最小值為()A. B.2C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.在圓M:中,過點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.14.在平面幾何中有如下結(jié)論:若正三角形的內(nèi)切圓周長為,外接圓周長為,則.推廣到空間幾何可以得到類似結(jié)論:若正四面體的內(nèi)切球表面積為,外接球表面積為,則__________15.如圖,圖形中的圓是正方形的內(nèi)切圓,點E,F(xiàn),G,H為對角線與圓的交點,若向正方形內(nèi)隨機投入一點,則該點落在陰影部分區(qū)域內(nèi)的概率為_________16.函數(shù)的圖象在點處的切線方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當在處取得極值時,求函數(shù)的解析式;(2)當?shù)臉O大值不小于時,求的取值范圍18.(12分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設(shè)為上一點,滿足,若直線與平面所成的角為,求二面角的余弦值.19.(12分)已知等差數(shù)列滿足,前7項和為(Ⅰ)求的通項公式(Ⅱ)設(shè)數(shù)列滿足,求的前項和.20.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,______,求m的值從下列三個條件中任選一個補充在上面問題中并作答:條件①:;條件②:圓上一點P到直線的最大距離為;條件③:21.(12分)已知圓的圓心為,且圓經(jīng)過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數(shù)取值范圍22.(10分)已知橢圓的離心率為,以坐標原點為圓心,以橢圓M的短半軸長為半徑的圓與直線有且只有一個公共點(1)求橢圓M的標準方程;(2)過橢圓M的右焦點F的直線交橢圓M于A,B兩點,過F且垂直于直線的直線交橢圓M于C,D兩點,則是否存在實數(shù)使成立?若存在,求出的值;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】按照框圖中程序,逐步執(zhí)行循環(huán),即可求得答案.【詳解】第一次循環(huán):,,第二次循環(huán):,,第三次循環(huán):,,第四次循環(huán):,,第五次循環(huán):,,第六次循環(huán):,,第七次循環(huán):,,退出循環(huán),輸出.故選:B2、B【解析】根據(jù)雙曲線的定義及,求出,,,,再利用余弦定理計算可得;【詳解】解:依題意可知、,又且,所以,,,,則,且,即,即,所以離心率.故選:B3、D【解析】根據(jù)雙曲線標準方程與漸近線的關(guān)系即可求解.【詳解】當雙曲線焦點在x軸上時,漸近線為,故離心率為;當雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.4、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質(zhì)可判斷D【詳解】A.當時,,但,故A錯;B.當時,,故B錯;C.當時,,但,故C錯;D.若,則,D正確故選:D5、B【解析】函數(shù),,,,,利用導數(shù)研究函數(shù)的單調(diào)性以及極值,畫出圖象A.結(jié)合圖象可判斷出正誤;B.設(shè)函數(shù)的值域為,函數(shù),的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,當時,,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結(jié)合圖象,可得A不正確B.設(shè)函數(shù)的值域為,函數(shù),的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,因此當時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結(jié)合圖象可知,因此D不正確故選:B6、B【解析】由瞬時變化率的定義,代入公式求解計算.【詳解】由題意,該質(zhì)點在時的瞬時速度為.故選:B7、C【解析】利用空間向量的坐標運算即可求解.【詳解】因為,,所以,故選:C.8、B【解析】前7年投入資金可看成首項為160,公差為20的等差數(shù)列,后4年投入資金可看成首項為260,公比為1.1的等比數(shù)列,分別求和,即可求出所求【詳解】2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,成等差數(shù)列,則2020年投入資金萬元,年共7年投資總額為,從2021年開始每年投入資金比上一年增加,則從2021年到2024年投入資金成首項為,公比為1.1,項數(shù)為4的等比數(shù)列,故從2021年到2024年投入總資金為,故到2024年底該市生態(tài)環(huán)境建設(shè)投資總額大約為萬元故選:9、C【解析】根據(jù)題意、空間向量基底的概念和共線的運算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個基底,則與共線或與其中有一個為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個向量,存在唯一的實數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個實數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯誤.故選:C10、A【解析】直接利用公式計算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,,所以,解得.故選:A11、C【解析】根據(jù)頻率計算出正確答案.【詳解】一句也說不出的學生頻率為,所以估計名學生中,一句也說不出的有人.故選:C12、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達定理,求得,利用拋物線定義,將目標式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因為拋物線的焦點的坐標為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當且僅當,即時取得最小值.故選:D.【點睛】本題考察拋物線中的最值問題,涉及到韋達定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標式,是解決問題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先將圓的方程配成標準式,即可得到圓心坐標與半徑,從而可得點在圓內(nèi),即可得到過點的最長弦、最短弦弦長,即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點,則,所以點在圓內(nèi),所以過點的最長弦,又,所以最短弦,所以故答案為:14、【解析】分析:平面圖形類比空間圖形,二維類比三維得到,類比平面幾何的結(jié)論,確定正四面體的外接球和內(nèi)切球的半徑之比,即可求得結(jié)論.詳解:平面幾何中,圓的周長與圓的半徑成正比,而在空間幾何中,球的表面積與半徑的平方成正比,因為正四面體的外接球和內(nèi)切球的半徑之比是,,故答案為.點睛:本題主要考查類比推理,屬于中檔題.類比推理問題,常見的類型有:(1)等差數(shù)列與等比數(shù)列的類比;(2)平面與空間的類比;(3)橢圓與雙曲線的類比;(4)復數(shù)與實數(shù)的類比;(5)向量與數(shù)的類比.15、【解析】利用幾何概型概率計算公式,計算得所求概率.【詳解】設(shè)正方形的邊長為2,則陰影部分的面積為,故若向正方形內(nèi)隨機投入一點,則該點落在陰影部分區(qū)域內(nèi)概率為故答案為:.16、【解析】求出、的值,利用點斜式可得出所求切線的方程.【詳解】因為,則,所以,,,故所求切線方程為,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)對函數(shù)求導,根據(jù)求出m,并驗證此時函數(shù)在x=1處取得極值,進而求得答案;(2)對函數(shù)求導,進而求出函數(shù)的單調(diào)區(qū)間和極大值,然后求出m的范圍.【小問1詳解】因為,所以.因為在處取得極值,所以,所以,此時,時,,單調(diào)遞減,時,,單調(diào)遞增,即在處取得極小值,故.【小問2詳解】,令,解得.時,,單調(diào)遞增,時,,單調(diào)遞減,時,,單調(diào)遞增.,即的取值范圍是.18、(1)證明見解析;(2).【解析】(1)由三角形的邊角關(guān)系可證,再由底面,可得.即可證明底面,由面面垂直的判定定理得證.(2)以點為坐標原點,,,分別為,,軸建立空間坐標系,利用空間向量法求出二面角的余弦值.【詳解】解析:(1)證明:由,,,,,所以,又,∴,∴,∴,因為底面,底面,∴.因為,底面,底面,底面,底面,所以面面.(2)由(1)可知為與平面所成的角,∴,∴,,由及,可得,,以點為坐標原點,,,分別為,,軸建立空間坐標系,則,,,,設(shè)平面的法向量為,則,,取,設(shè)平面的法向量為,則,,取,所以,所以二面角余弦值為.【點睛】本題考查面面垂直的判定,線面垂直的性質(zhì),利用空間向量法求二面角的余弦值,屬于中檔題.19、(1)(2).【解析】(1)根據(jù)等差數(shù)列的求和公式可得,得,然后由已知可得公差,進而求出通項;(2)先明確=,為等差乘等比型通項故只需用錯位相減法即可求得結(jié)論.解析:(Ⅰ)由,得因為所以(Ⅱ)20、(1)(2)【解析】(1)根據(jù)圓心在過點,的線段的中垂線上,同時圓心圓心在直線上,可求出圓心的坐標,進而求得半徑,最后求出其標準方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時相同.【小問1詳解】由題意可知,圓心在點的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因為,,所以圓心C到直線l的距離,則,解得,②,圓上一點P到直線的最大距離為,可知圓心C到直線l的距離則,解得,③,因為,所以,得,又,所以圓心C到直線l的距離,則,解得21、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水盆工安全風險模擬考核試卷含答案
- 農(nóng)作物植保員風險評估測試考核試卷含答案
- 信息通信網(wǎng)絡(luò)終端維修員崗前班組建設(shè)考核試卷含答案
- 陽極爐工安全實踐知識考核試卷含答案
- 機場無線電臺操縱修理工安全生產(chǎn)知識強化考核試卷含答案
- 軟木烘焙工崗前實操操作考核試卷含答案
- 水上拋填工沖突管理強化考核試卷含答案
- 木門窗工安全意識能力考核試卷含答案
- 大氣環(huán)境監(jiān)測員發(fā)展趨勢強化考核試卷含答案
- 普通過磷酸鈣生產(chǎn)工崗前安全生產(chǎn)能力考核試卷含答案
- 2025年環(huán)境生態(tài)學期末試題及答案
- 2025版兒童特應(yīng)性皮炎基層診療指南
- 野生動物調(diào)查樣線法方案
- 肝移植圍手術(shù)期護理
- 氬氣瓶安全培訓課件
- 城市污水處理廠運營方案
- 地磚鋪設(shè)技術(shù)交底及質(zhì)量控制措施
- 施工策劃方案
- 2025年重慶歷史高考試題及答案
- 高考熟詞生義解密(復習講義)-2026年高考英語一輪復習(北京專用)答案版
- 鋼渣處理工技能操作考核試卷及答案
評論
0/150
提交評論