版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省浙東北聯(lián)盟2025年高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知,則“”是“直線與平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.以軸為對(duì)稱軸,頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)到準(zhǔn)線的距離為4的拋物線方程是()A. B.C.或 D.或4.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,則()A. B.C. D.5.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點(diǎn),則的歐拉線方程為()A. B.C. D.6.?dāng)?shù)列滿足,,,則數(shù)列的前10項(xiàng)和為()A.60 B.61C.62 D.637.在平面直角坐標(biāo)系中,線段的兩端點(diǎn),分別在軸正半軸和軸正半軸上滑動(dòng),若圓上存在點(diǎn)是線段的中點(diǎn),則線段長(zhǎng)度的最小值為()A.4 B.6C.8 D.108.若雙曲線的漸近線方程為,則實(shí)數(shù)a的值為()A B.C.2 D.9.已知圓柱的表面積為定值,當(dāng)圓柱的容積最大時(shí),圓柱的高的值為()A.1 B.C. D.210.魯班鎖運(yùn)用了中國(guó)古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時(shí)代各國(guó)工匠魯班所作,是由六根內(nèi)部有槽的長(zhǎng)方形木條,按橫豎立三方向各兩根凹凸相對(duì)咬合一起,形成的一個(gè)內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個(gè)構(gòu)件的圖片,下圖2是其中的一個(gè)構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.11.有6個(gè)相同的球,分別標(biāo)有數(shù)字1,2,3,4,5,6,從中有放回的隨機(jī)取兩次,每次取1個(gè)球.甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是6”,丙表示事件“兩次取出的球的數(shù)字之和是5”,丁表示事件“兩次取出的球的數(shù)字之和是偶數(shù)”,則下列判斷正確的是()A.甲與丙是互斥事件 B.乙與丙是對(duì)立事件C.甲與丁是對(duì)立事件 D.丙與丁是互斥事件12.已知F為橢圓C:=1(a>b>0)右焦點(diǎn),O為坐標(biāo)原點(diǎn),P為橢圓C上一點(diǎn),若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-1二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的聚焦特點(diǎn):從拋物線的焦點(diǎn)發(fā)出的光經(jīng)過拋物線反射后,光線都平行于拋物線的對(duì)稱軸.另一方面,根據(jù)光路的可逆性,平行于拋物線對(duì)稱軸的光線射向拋物線后的反射光線都會(huì)匯聚到拋物線的焦點(diǎn)處.已知拋物線,一條平行于拋物線對(duì)稱軸的光線從點(diǎn)向左發(fā)出,先經(jīng)拋物線反射,再經(jīng)直線反射后,恰好經(jīng)過點(diǎn),則該拋物線的標(biāo)準(zhǔn)方程為___________.14.如圖,PD垂直于正方形ABCD所在平面,AB=2,E為PB的中點(diǎn),cos〈,〉=,若以DA,DC,DP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,則點(diǎn)E的坐標(biāo)為________15.已知是雙曲線上的一點(diǎn),是上的兩個(gè)焦點(diǎn),若,則的取值范圍是_______________16.函數(shù)極值點(diǎn)的個(gè)數(shù)是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在對(duì)某老舊小區(qū)污水分流改造時(shí),需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級(jí)污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價(jià)為400元/平方米,中間兩道隔墻的建造單價(jià)為248元/平方米,池底的建造單價(jià)為80元/平方米,池蓋的建造單價(jià)為100元/平方米,建造此污水處理池相關(guān)人員的勞務(wù)費(fèi)以及其他費(fèi)用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計(jì)算時(shí)忽略不計(jì))(1)現(xiàn)有財(cái)政撥款9萬元,如果將污水處理池的寬建成9米,那么9萬元的撥款是否夠用?(2)能否通過合理的設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總費(fèi)用最低?最低費(fèi)用為多少萬元?18.(12分)某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率)(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大19.(12分)如圖,在四棱錐中,底面是正方形,側(cè)面底面,為側(cè)棱上一點(diǎn)(1)求證:;(2)若為中點(diǎn),平面與側(cè)棱于點(diǎn),且,求四棱錐的體積20.(12分)已知橢圓過點(diǎn),且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點(diǎn),且,證明:直線過定點(diǎn).21.(12分)設(shè)橢圓:()的離心率為,橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值.22.(10分)已知函數(shù)R)(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;(2)求的單調(diào)區(qū)間
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】因但2、A【解析】首先由兩直線平行的充要條件求出參數(shù)的取值,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】因?yàn)橹本€與平行,所以,解得或,所以“”是“直線與平行”的充分不必要條件.故選:A.3、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意設(shè)拋物線方程為因?yàn)榻裹c(diǎn)到準(zhǔn)線的距離為4,所以,所以,所以拋物線方程或故選:C4、A【解析】先化簡(jiǎn)函數(shù)表達(dá)式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到的圖象.故選:A5、D【解析】根據(jù)題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因?yàn)?,所以線段的中點(diǎn)的坐標(biāo),線段所在直線的斜率,則線段的垂直平分線的方程為,即,因?yàn)?,所以的外心、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點(diǎn)睛】本題主要考走查直線的方程,解題的關(guān)鍵是準(zhǔn)確找出歐拉線,屬于中檔題.6、B【解析】討論奇偶性,應(yīng)用等差、等比前n項(xiàng)和公式對(duì)作分組求和即可.【詳解】當(dāng)且為奇數(shù)時(shí),,則,當(dāng)且為偶數(shù)時(shí),,則,∴.故選:B.7、C【解析】首先求點(diǎn)的軌跡,將問題轉(zhuǎn)化為兩圓有交點(diǎn),即根據(jù)兩圓的位置關(guān)系,求參數(shù)的取值范圍.【詳解】設(shè),,的中點(diǎn)為,則,故點(diǎn)的軌跡是以原點(diǎn)為圓心,為半徑的圓,問題轉(zhuǎn)化為圓與圓有交點(diǎn),所以,,即,解得:,所以線段長(zhǎng)度的最小值為.故選:C8、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D9、B【解析】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),則可得,則圓柱的體積為,利用導(dǎo)數(shù)求出最大值,確定值.【詳解】設(shè)圓柱的底面半徑為,則圓柱底,圓柱側(cè),∴,∴,則圓柱的體積,∴,由得,由得,∴當(dāng)時(shí),取極大值,也是最大值,即故選:B【點(diǎn)睛】本題主要考查了圓柱表面積和體積的計(jì)算,考查了導(dǎo)數(shù)的實(shí)際應(yīng)用,考查了學(xué)生的應(yīng)用意識(shí).10、B【解析】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,進(jìn)而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,如下圖所示,其表面積為:.故選:B.【點(diǎn)睛】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.11、D【解析】根據(jù)互斥事件和對(duì)立事件的定義判斷【詳解】當(dāng)?shù)谝淮稳〕?,第二次取出4時(shí),甲丙同時(shí)發(fā)生,不互斥不對(duì)立;第二次取出的球的數(shù)字是6與兩次取出的球的數(shù)字之和是5不可能同時(shí)發(fā)生,但可以同時(shí)不發(fā)生,不對(duì)立,當(dāng)?shù)谝淮稳〕?,第二次取出3時(shí),甲與丁同時(shí)發(fā)生,不互斥不對(duì)立,兩次取出的球的數(shù)字之和是5與兩次取出的球的數(shù)字之和是偶數(shù)不可以同時(shí)發(fā)生,但可以同時(shí)不發(fā)生,因此是互斥不對(duì)立故選:D12、D【解析】記橢圓的左焦點(diǎn)為,在中,通過余弦定理得出,,根據(jù)橢圓的定義可得,進(jìn)而可得結(jié)果.【詳解】記橢圓的左焦點(diǎn)為,在中,可得,在中,可得,故,故,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)拋物線的聚焦特點(diǎn),經(jīng)過拋物線后經(jīng)過拋物線焦點(diǎn),再經(jīng)直線反射后經(jīng)過點(diǎn),則根據(jù)反射特點(diǎn),列出相關(guān)方程,解出方程即可.【詳解】設(shè)光線與拋物線的交點(diǎn)為,拋物線的焦點(diǎn)為,則可得:拋物線的焦點(diǎn)為:則直線的方程為:設(shè)直線與直線的交點(diǎn)為,則有:解得:則過點(diǎn)且垂直于的直線的方程為:根據(jù)題意可知:點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上設(shè)點(diǎn),的中點(diǎn)為,則有:直線垂直于,則有:點(diǎn)在直線上,則有:點(diǎn)在直線上,則有:化簡(jiǎn)得:又故故答案為:【點(diǎn)睛】直線關(guān)于直線對(duì)稱對(duì)稱,利用中點(diǎn)坐標(biāo)公式和直線與直線垂直的特點(diǎn)建立方程,根據(jù)題意列出隱含的方程是關(guān)鍵14、(1,1,1)【解析】設(shè)PD=a,則D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐標(biāo)為(1,1,1)15、【解析】由題意,,.故答案為.16、0【解析】通過導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可得極值點(diǎn)的情況.【詳解】因?yàn)?,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點(diǎn)的個(gè)數(shù)是0,故答案為:0.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不夠;(2)將污水處理池建成長(zhǎng)為16.2米,寬為10米時(shí),建造總費(fèi)用最低,最低費(fèi)用為90000元.【解析】(1)根據(jù)題意結(jié)合單價(jià)直接計(jì)算即可得出;(2)設(shè)污水處理池的寬為米,表示出總費(fèi)用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長(zhǎng)為(米),建造總費(fèi)用為:(元)因?yàn)?,所以如果污水處理池的寬建?米,那么9萬元的撥款是不夠用的.【小問2詳解】設(shè)污水處理池的寬為米,建造總費(fèi)用為元,則污水處理池的長(zhǎng)為米.則因?yàn)?,等?hào)僅當(dāng),即時(shí)成立,所以時(shí)建造總費(fèi)用取最小值90000,所以將污水處理池建成長(zhǎng)為16.2米,寬為10米時(shí),建造總費(fèi)用最低,最低費(fèi)用為90000元.18、(1)V(r)=(300r﹣4r3)(0,5)(2)見解析【解析】(1)先由圓柱的側(cè)面積及底面積計(jì)算公式計(jì)算出側(cè)面積及底面積,進(jìn)而得出總造價(jià),依條件得等式,從中算出,進(jìn)而可計(jì)算,再由可得;(2)通過求導(dǎo),求出函數(shù)在內(nèi)的極值點(diǎn),由導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)性,進(jìn)而得出取得最大值時(shí)的值.(1)∵蓄水池的側(cè)面積的建造成本為元,底面積成本為元∴蓄水池的總建造成本為元所以即∴∴又由可得故函數(shù)的定義域?yàn)椋?)由(1)中,可得()令,則∴當(dāng)時(shí),,函數(shù)為增函數(shù)當(dāng),函數(shù)為減函數(shù)所以當(dāng)時(shí)該蓄水池的體積最大考點(diǎn):1.函數(shù)的應(yīng)用問題;2.函數(shù)的單調(diào)性與導(dǎo)數(shù);2.函數(shù)的最值與導(dǎo)數(shù).19、(1)證明見解析(2)【解析】(1)利用面面垂直的性質(zhì)定理可得出平面,再利用線面垂直的性質(zhì)可得出;(2)分析可知為的中點(diǎn),平面,計(jì)算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問1詳解】證明:因?yàn)樗倪呅螢檎叫?,則,因?yàn)閭?cè)面底面,平面平面,平面,所以平面,又平面,所以.【小問2詳解】解:因?yàn)?,平面,平面,所以,平面,因?yàn)槠矫妫矫嫫矫?,所以,所以,,則,所以,四邊形是直角梯形,又是中點(diǎn),所以,,所以,由平面,平面,所以,從而,正三角形中,是中點(diǎn),,即,,所以平面,因?yàn)?,所?20、(1);(2)證明見解析.【解析】(1)由離心率、過點(diǎn)和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當(dāng)直線斜率不存在時(shí),表示出兩點(diǎn)坐標(biāo),由兩點(diǎn)連線斜率公式表示出,整理可得直線為;當(dāng)直線斜率存在時(shí),設(shè),與橢圓方程聯(lián)立可得韋達(dá)定理的形式,代入中整理可得,由此可得直線所過定點(diǎn);綜合兩種情況可得直線過定點(diǎn).【詳解】(1)橢圓過點(diǎn),即,;,又,,橢圓的方程為:.(2)當(dāng)直線斜率不存在時(shí),設(shè)直線方程為,則,則,,解得:,直線方程為;當(dāng)直線斜率存在時(shí),設(shè)直線方程為,聯(lián)立方程組得:,設(shè),則,(*),則,將*式代入化簡(jiǎn)可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過定點(diǎn);綜上所述:直線恒過定點(diǎn).【點(diǎn)睛】思路點(diǎn)睛:本題考查直線與橢圓綜合應(yīng)用中的直線過定點(diǎn)問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡(jiǎn)直線方程;④根據(jù)直線過定點(diǎn)的求解方法可求得結(jié)果.21、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標(biāo)準(zhǔn)方程;(2)本小題先設(shè)過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè)點(diǎn)、的坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場(chǎng)材料使用規(guī)范與標(biāo)準(zhǔn)
- 鋼結(jié)構(gòu)預(yù)埋件定位方案
- 內(nèi)江職業(yè)技術(shù)學(xué)院《高等物理有機(jī)化學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 南昌師范學(xué)院《紀(jì)錄片創(chuàng)作影視照明》2023-2024學(xué)年第二學(xué)期期末試卷
- 成都理工大學(xué)《現(xiàn)代通信實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 資陽口腔職業(yè)學(xué)院《健康管理與干預(yù)能力的理論與實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 陜西工商職業(yè)學(xué)院《衛(wèi)生法規(guī)》2023-2024學(xué)年第二學(xué)期期末試卷
- 南京農(nóng)業(yè)大學(xué)《飛行力學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西工程職業(yè)學(xué)院《合唱IV》2023-2024學(xué)年第二學(xué)期期末試卷
- 北京大學(xué)《小學(xué)綜合實(shí)踐活動(dòng)設(shè)計(jì)與實(shí)施》2023-2024學(xué)年第二學(xué)期期末試卷
- 七大浪費(fèi)考試試卷及答案
- 新版GCP培訓(xùn)課件
- 客戶開發(fā)流程圖
- 音樂節(jié)活動(dòng)場(chǎng)地租賃合同
- 風(fēng)險(xiǎn)管理顧問協(xié)議
- 一年級(jí)下冊(cè)字帖筆順
- 2024屆高考語文復(fù)習(xí):散文訓(xùn)練王劍冰散文(含解析)
- SWITCH暗黑破壞神3超級(jí)金手指修改 版本號(hào):2.7.7.92380
- 二尖瓣狹窄講課課件
- 腸造瘺術(shù)后護(hù)理查房
評(píng)論
0/150
提交評(píng)論