湖北省黃石市育英高級中學(xué)2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末統(tǒng)考模擬試題含解析_第1頁
湖北省黃石市育英高級中學(xué)2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末統(tǒng)考模擬試題含解析_第2頁
湖北省黃石市育英高級中學(xué)2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末統(tǒng)考模擬試題含解析_第3頁
湖北省黃石市育英高級中學(xué)2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末統(tǒng)考模擬試題含解析_第4頁
湖北省黃石市育英高級中學(xué)2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省黃石市育英高級中學(xué)2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末統(tǒng)考模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”為真命題一個充分不必要條件是()A. B.C. D.2.已知點,分別在雙曲線的左右兩支上,且關(guān)于原點對稱,的左焦點為,直線與的左支相交于另一點,若,且,則的離心率為()A B.C. D.3.北京大興國際機(jī)場的顯著特點之一是各種彎曲空間的運(yùn)用,在數(shù)學(xué)上用曲率刻畫空間彎曲性.規(guī)定:多面體的頂點的曲率等于與多面體在該點的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點的曲率均為零,多面體的總曲率等于該多面體各頂點的曲率之和.例如:正四面體在每個頂點有個面角,每個面角是,所以正四面體在每個頂點的曲率為,故其總曲率為.給出下列三個結(jié)論:①正方體在每個頂點的曲率均為;②任意四棱錐總曲率均為;③若某類多面體的頂點數(shù),棱數(shù),面數(shù)滿足,則該類多面體的總曲率是常數(shù).其中,所有正確結(jié)論的序號是()A.①② B.①③C.②③ D.①②③4.已知點是雙曲線的左焦點,定點,是雙曲線右支上動點,則的最小值為().A.7 B.8C.9 D.105.曲線與曲線的A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等6.已知函數(shù),則()A.0 B.1C.2 D.7.已知是拋物線上的一個動點,是圓上的一個動點,是一個定點,則的最小值為A. B.C. D.8.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.9.七巧板是一種古老的中國傳統(tǒng)智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學(xué)用七巧板拼成了一個“鴿子”形狀,若從“鴿子”身上任取一點,則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.10.在二項式的展開式中,前三項的系數(shù)成等差數(shù)列,把展開式中所有的項重新排成一列,則有理項互不相鄰的概率()A. B.C. D.11.拋物線的準(zhǔn)線方程為,則實數(shù)的值為()A. B.C. D.12.若,則()A.0 B.1C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{}的前n項和為,則該數(shù)列的通項公式__________.14.若經(jīng)過點且斜率為1的直線與拋物線交于,兩點,則______.15.若滿足約束條件,則的最大值為_________.16.已知直線被圓截得的弦長等于該圓的半徑,則實數(shù)_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)是定義在實數(shù)集上的奇函數(shù),且當(dāng)時,(1)求的解析式;(2)若在上恒成立,求的取值范圍18.(12分)已知動點M到點F(0,)的距離與它到直線的距離相等(1)求動點M的軌跡C的方程;(2)過點P(,-1)作C的兩條切線PA,PB,切點分別為A,B,求直線AB的方程19.(12分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:20.(12分)如圖,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E為棱BC上的點,且(1)求證:平面PAC;(2)求二面角A-PC-D的正弦值21.(12分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.22.(10分)已知拋物線的焦點是橢圓的一個焦點,直線交拋物線E于兩點(1)求E的方程;(2)若以BC為直徑的圓過原點O,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求解命題為真命題的充要條件,再利用集合包含關(guān)系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項B符合題意故選:B2、D【解析】根據(jù)雙曲線的定義及,,應(yīng)用勾股定理,可得關(guān)系,即可求解.【詳解】設(shè)雙曲線的右焦點為,連接,,,如圖:根據(jù)雙曲線的對稱性及可知,四邊形為矩形.設(shè)因為,所以,又,所以,,在和中,,①,②由②化簡可得,③把③代入①可得:,所以,故選:D【點睛】本題主要考查了雙曲線的定義,雙曲線的簡單幾何性質(zhì),勾股定理,屬于難題.3、D【解析】根據(jù)曲率的定義依次判斷即可.【詳解】①根據(jù)曲率的定義可得正方體在每個頂點的曲率為,故①正確;②由定義可得多面體的總曲率頂點數(shù)各面內(nèi)角和,因為四棱錐有5個頂點,5個面,分別為4個三角形和1個四邊形,所以任意四棱錐的總曲率為,故②正確;③設(shè)每個面記為邊形,則所有的面角和為,根據(jù)定義可得該類多面體的總曲率為常數(shù),故③正確.故選:D.4、C【解析】設(shè)雙曲線的右焦點為M,作出圖形,根據(jù)雙曲線的定義可得,可得出,利用A、P、M三點共線時取得最小值即可得解.【詳解】∵是雙曲線的左焦點,∴,,,,設(shè)雙曲線的右焦點為M,則,由雙曲線的定義可得,則,所以,當(dāng)且僅當(dāng)A、P、M三點共線時,等號成立,因此,的最小值為9.故選:C.【點睛】關(guān)鍵點點睛:利用雙曲線的定義求解線段和的最小值,有如下方法:(1)求解橢圓、雙曲線有關(guān)的線段長度和、差的最值,都可以通過相應(yīng)的圓錐曲線的定義分析問題;(2)圓外一點到圓上的點的距離的最值,可通過連接圓外的點與圓心來分析求解.5、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷【詳解】解:曲線表示焦點在軸上,長軸長10,短軸長為6,離心率為,焦距為8曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為8對照選項,則正確故選:【點睛】本題考查橢圓的方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題6、C【解析】對函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡單題.7、A【解析】恰好為拋物線的焦點,等于到準(zhǔn)線的距離,要想最小,過圓心作拋物線的準(zhǔn)線的垂線交拋物線于點,交圓于,最小值等于圓心到準(zhǔn)線的距離減去半徑4-1=.考點:1.拋物線的定義;2.圓中的最值問題;8、D【解析】根據(jù)求解即可.【詳解】因為等比數(shù)列,,所以.故選:D9、C【解析】設(shè)正方形邊長為1,求出七巧板中“4”這一塊的面積,然后計算概率【詳解】設(shè)正方形邊長為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長為,面積為,所以概率為故選:C10、A【解析】先根據(jù)前三項的系數(shù)成等差數(shù)列求,再根據(jù)古典概型概率公式求結(jié)果【詳解】因為前三項的系數(shù)為,,,當(dāng)時,為有理項,從而概率為.故選:A.11、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B12、D【解析】由復(fù)數(shù)的乘方運(yùn)算求,再求模即可.【詳解】由題設(shè),,故2.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2n+1【解析】由計算,再計算可得結(jié)論【詳解】由題意時,,又適合上式,所以故答案為:【點睛】本題考查由求通項公式,解題根據(jù)是,但要注意此式不含,14、【解析】由題意寫出直線的方程與拋物線方程聯(lián)立,得出韋達(dá)定理,由弦長公式可得答案.【詳解】設(shè),則直線的方程為由,得所以所以故答案為:15、7【解析】畫出約束條件所表示的平面區(qū)域,結(jié)合圖象和直線在軸上的截距,確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解.【詳解】畫出不等式組所表示的平面區(qū)域,如圖所示,目標(biāo)函數(shù)可化為,當(dāng)直線過點點時,此時直線在軸上的截距最大,此時目標(biāo)函數(shù)取得最大值,又由,解得,即,所以目標(biāo)函數(shù)的最大值為.故答案為:.16、2或-4【解析】求出圓心到直線的距離,由幾何法表示出弦長,列出等量關(guān)系,即可求出結(jié)果.【詳解】由得,所以圓的圓心為,半徑,圓心到直線的距離,則由題可得,即,解得或.故答案為:2或.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)實數(shù)的取值范圍是【解析】(1)根據(jù)函數(shù)奇偶性求解析式;(2)將恒成立轉(zhuǎn)化為令,恒成立,討論二次函數(shù)系數(shù),結(jié)合根的分布.【詳解】解:(1)因為函數(shù)是定義在實數(shù)集上的奇函數(shù),所以,當(dāng)時,則所以當(dāng)時所以(2)因為時,在上恒成立等價于即在上恒成立令,則①當(dāng)時,不恒成立,故舍去②當(dāng)時必有,此時對稱軸若即或時,恒成立因為,所以若即時,要使恒成立則有與矛盾,故舍去綜上,實數(shù)的取值范圍是【點睛】應(yīng)用函數(shù)奇偶性可解決的四類問題及解題方法(1)求函數(shù)值:將待求值利用奇偶性轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解;(2)求解析式:先將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求解,或充分利用奇偶性構(gòu)造關(guān)于的方程(組),從而得到的解析式;(3)求函數(shù)解析式中參數(shù)的值:利用待定系數(shù)法求解,根據(jù)得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程(組),進(jìn)而得出參數(shù)的值;(4)畫函數(shù)圖象和判斷單調(diào)性:利用奇偶性可畫出另一對稱區(qū)間上的圖象及判斷另一區(qū)間上的單調(diào)性.18、(1)(2)【解析】(1)根據(jù)拋物線的定義或者直接列式化簡即可求出;(2)方法一:設(shè)切線的方程為:,與拋物線方程聯(lián)立,由即可求出的值,從而得出點的坐標(biāo),即可求出直線方程【小問1詳解】設(shè)M(x,y),則解得.所以該拋物線的方程為【小問2詳解】[方法一]:依題意,切線的斜率存在,設(shè)切線的方程為:,與拋物線方程聯(lián)立,得,令,得或.從而或,解得或,所以切點A(-1,),B(2,2),直線AB的斜率為,所以直線AB的方程為,整理得.[方法二]:由可得,所以,設(shè)切點為(),則切線的斜率,又切線過點P(,-1),所以,整理得,解得或,所以切點的坐標(biāo)為A(-1,),B(2,2),所以直線AB的斜率為,所以直線AB的方程為,整理得19、(1)答案見詳解(2),證明見解析【解析】(1)求導(dǎo)得,,分類討論參數(shù)a的范圍即可判斷單調(diào)區(qū)間;(2)設(shè),,聯(lián)立整理得,構(gòu)造得,構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)判斷單調(diào)性,進(jìn)而得證.小問1詳解】由,,可得,當(dāng)時,,所以在上單調(diào)遞增;當(dāng)時,令,得,令,得所以在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】證明:因為函數(shù)有兩個零點,由(1)得,此時的遞增區(qū)間為,遞減區(qū)間為,有極小值.所以,可得,所以.由(1)可得的極小值點為,則不妨設(shè).設(shè),,則則,即,整理得,所以,設(shè),則,所以在上單調(diào)遞減,所以,所以,即.20、(1)證明見解析(2)【解析】建立空間直角坐標(biāo)系,計算出相關(guān)點的坐標(biāo),進(jìn)而計算出相關(guān)向量的坐標(biāo);(1)計算向量的數(shù)量積,,根據(jù)數(shù)量積結(jié)果為零,證明線線垂直,進(jìn)而證明線面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根據(jù)向量的夾角公式即可求解.【小問1詳解】證明:因為平面ABCD,平面ABCD,平面ABCD,所以,,又因為,則以A為坐標(biāo)原點,分別以AB、AD、AP所在的直線為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,,,則,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小問2詳解】解:由(1)可知平面PAC,可作為平面PAC的法向量,設(shè)平面PCD的法向量,因為,所以,即,不妨設(shè),得,又由圖示知二面角為銳角,所以二面角的正弦值為21、(1)證明過程見解析;(2).【解析】(1)利用平面與平面垂直的性質(zhì)得出直線與平面垂直,進(jìn)而得出平面;(2)建立空間直角坐標(biāo)系即可求解.【小問1詳解】證明:因為平面平面,交線為且平面中,所以平面又平面所以又,且所以平面【小問2詳解】解:由(1)知,平面且所以、、兩兩垂直因此以原點,建立如圖所示的空間直角坐標(biāo)系因為,,,設(shè)所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論