優(yōu)先考慮大腦健康-麥肯錫_第1頁
優(yōu)先考慮大腦健康-麥肯錫_第2頁
優(yōu)先考慮大腦健康-麥肯錫_第3頁
優(yōu)先考慮大腦健康-麥肯錫_第4頁
優(yōu)先考慮大腦健康-麥肯錫_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Technicalappendix

PrioritizingBrainHealth

April2025

Contents

2

Primaryandassociatedburdenofmentalhealthconditions

3

Mentalhealthimprovementthroughscalinginterventions

9

Impactofhealthimprovementsontheeconomy

11

Costanalysisandeconomicreturncalculationmethodology

15

Bibliography

Technicalappendix

Thisappendixoutlinesthemethodologyandkey

assumptionsunderlyingthePrioritizingBrain

Healthmodel,whichestimatestheprimaryand

associateddiseaseburdenofmentalhealth

conditionsandmodelsthepotentialimpactof

scalingprovenmentalhealthinterventionsintermsofpopulation-levelhealthimprovementandthe

globaleconomyboost.Inthisstudy,mentalhealthconditionsaredefinedasincludingbothmentalandsubstanceusedisorders.Theseconditionsoften

co-occurwithothernoncommunicablediseases(NCDs),exacerbatingtheoveralldiseaseburden.

ThisstudyisfocusedonshowingtherelationshipbetweenmentalhealthconditionsandNCDsandtheadvantagesofreducingdiseaseburdenby

expandingaccesstoestablishedinterventions.

Thisanalysisrepresentsan“artofthepossible”

approach,aimingtoestimatethepotentialbenefitsofexpandingaccesstoprovenbrainhealth

interventionsonaglobalscale.Whileitprovides

ahigh-levelperspectiveontheopportunitiesandpotentialimpact,itisimportanttoacknowledge

thatthereareinherentlimitationsinthedataand

assumptionsapplied.Furtherresearchinthisareawouldbevaluabletorefinetheestimates.

Primaryandassociatedburdenofmentalhealthconditions

Primarydiseaseburdenofmentalhealthconditions

DatafromtheInstituteforHealthMetricsand

Evaluation(IHME)GlobalBurdenofDisease(GBD)2021datasuitewasusedtoestimatetheprimary

diseaseburdenformentalhealthconditions,whichincludesbothmentalandsubstanceusedisorders.SpecificconditionsintheIHMEhierarchythatwereusedaspartofthisdefinitionareoutlinedasfollows:

—Mentaldisorders:

?anxietydisorders

?attention-deficit/hyperactivitydisorder

?autismspectrumdisorders

?bipolardisorder

?conductdisorder

?depressivedisorders

?eatingdisorders

?idiopathicdevelopmentalintellectualdisability

?othermentaldisorders

?schizophrenia

—Substanceusedisorders:

?alcoholusedisorders

?amphetamineusedisorders

?cannabisusedisorders

?cocaineusedisorders

?opioidusedisorders

?otherdrugusedisorders

Thetotalprimaryburdenofmentalhealthconditionswascalculatedbasedonthesumofthedisease

burdenforeachconditionoutlinedabove.The

modelquantifieddiseaseburdenintermsof

disability-adjustedlifeyears(DALYs)usingthe

IHMEdataset,whichincorporatesadjustmentsforcomorbiditiesandexcludesoverlappingimpacts

initscalculations.Thisensuresthattheburdenisaccuratelymeasuredwithoutdoublecountingacrossconditions.

Wedidnotincludeself-harmandneurological

disordersinthearticlefiguresandexhibits,but

weestimatedtheirdiseaseburdenandreduction

potentialseparatelyusingthesamemethodologyasmentalandsubstanceusedisorders.

AssociatedburdenofmentalhealthconditionsThemodelconsideredtwotypesofassociated

mentalhealthburden:

1.burdenfromotherNCDswheresubstanceuseisariskfactor

2.additionalriskofdevelopingotherNCDsifapersonhasapriormentalhealthdiagnosis

Associatedburdenfromsubstanceuserisks

Toestimatetheburdenassociatedwithsubstance

useriskfactors,themodelleveragedtheIHMEGBDdataset,whichquantifiesthediseaseburdenacrossalldiseasesattributabletoanymodifiableriskfactor.Fromthisdataset,themodelextractedthenon–mentalhealthNCDburdenlinkedtoalcoholordruguse.

PrioritizingBrainHealth2

PrioritizingBrainHealth3

Themodelincludedonlytheburdenfromother

NCDs,excludingtheburdenfrommentalhealth

conditions,asthesearealreadyconsideredpartoftheprimaryburden.Itisimportanttonotethattheremaybeasubstantialtimelagbetweensubstance

useandtheonsetofrelatedhealthissues,andsubstanceusedoesnotnecessarilyindicateasubstanceusedisorder.

AssociatedburdenfrompreexistingmentalhealthconditionsexacerbatingotherNCDsPeoplelivingwithmentalhealthconditions

experienceahigherprevalenceofotherNCDscomparedtopeoplewithoutamentalhealth

conditiondiagnosis.Additionalburdenwasestimatedfollowingathree-stepprocess:

1.Identifyanestimateoftheadditionalrelativeriskforpeoplewithapriormentalhealthcondition

diagnosis.

2.Calculatethepopulationattributablefraction(PAF)forthatconditionpair.

3.ApplythePAFtothediseaseburdenfor

therelevantnon–mentalhealthNCDs(pertheIHMEGBDprojectionsinthereferenceforecastscenario).1

Anevidencereviewwasconductedtoidentify

estimatesofadditionalriskforallmentalhealthandnon–mentalhealthNCDconditionpairs,looking

forstudiesthatmeasuretheadditionalriskof

developingnon–mentalhealthNCDsfollowingapriormentalhealthconditiondiagnosiscomparedtothepopulationwithoutapriormentalhealth

conditiondiagnosis.2

Tomaximizeconsistency,themodelreliedon

estimatesfromarecent,large-cohortlongitudinal

studywhereverpossible.Thisstudyisbasedon

apopulation-basedcohortof5.9millionpeople

borninDenmarkbetween1900and2015and

followedduringtheperiod2000to2016(83.9

millionperson-years).3Conditionpairhazardratiosadjustedforage,sex,calendartime,andprevious

mentalhealthorsubstanceusedisorders(identified

asModelBestimatesinthestudy)wereextracted

foruseinthisanalysis.Thissourcewasusedfor76percentoftheestimatesinthemodel(267individualdatapoints).WhereconditionpairswithinthescopeofthemodelwerenotcapturedintheDanishstudy,alternativeestimatesfrompeer-reviewed,publishedstudiesfromEurope,theAmericas,andAsiawere

identified.Wheremultipleestimateswereavailable,thelargestandmostrecentstudywasselectedforinclusioninthemodel.Intotal,18alternativestudieswereusedtoidentifytheremaining24percentof

estimatesincludedinthemodeling(86datapoints).Themodelassumednoadditionalriskwhereno

estimatesinthepublishedliteraturecouldbefound.

Conditioncategoriesusedintheselectedstudies

weremappedtotheconditionhierarchyusedintheIHMEGBDdataset,andthePAFwascalculated

foreveryconditionpairbyusingtheestimateof

additionalriskfromtheliteratureandcountry-,sex-,andageband–specificprevalenceestimatesfromthesamedataset.Thesevalueswereaddedup

toestimatetheassociateddiseaseburdenfrommentalhealthconditionsonotherNCDs.

ThisapproachisoutlinedinExhibit1.

Mentalhealthimprovement

throughscalinginterventions

Themodelestimatesthepotentialtoreducethe

burdenofmentalhealthconditionsbyimproving

accesstoproven,effectiveinterventions.Clinical

practiceguidelineswereappraisedtoidentify

themostappropriateinterventionstoscaleand

reviewedwithclinicalexperts.Foreachintervention,recentsystematicreviewsandmeta-analyseswereidentified.Ifthesewerenotavailable,high-quality

individualstudieswereusedtoextractthebest

availableestimatesofeffectivenessfordisease

burdenreduction,lookingseparatelyatimpacton

morbidityandmortality.Themodelconsidered100+condition-interventionpairsusingevidencefrom

acomprehensivereviewofabout100individualpapers,someofwhichcoveredmorethanoneinterventionorhealthcondition.

1SteinEmilVollset,“Burdenofdiseasescenariosfor204countriesandterritories,2022–2050:AforecastinganalysisfortheGlobalBurdenofDiseaseStudy2021,”TheLancet,May2024,Volume403,Number10440.

2AlthoughtheunderlyingbiologyandcausalpathwaysbetweenmentalhealthconditionsandotherNCDsarenotwellunderstoodinmanycases,temporalassociationshavebeenidentifiedinmultiplewell-designedstudies.

3“WorldBankcountryandlendinggroups,”WorldBank,accessedApril1,2025.

PrioritizingBrainHealth4

Exhibit1

Methodologytodetermineburdeninnon-mentalhealthconditionswherecomorbidmentalhealthconditionsdrivediseaseburden

Prevalenceofmentalhealthcondition1

Bycountry,sex,andagegroupfromIHME

Populationattributablefraction

p(RR–1)

1+p(RR–1)

1

PAF2=

Quanti?cationofefectofriskfactorbycomparingburdenassociatedto

Relativeriskofdevelopinganon-mentalhealthconditioninthosewithamentalhealthcondition

outcomewithamount

CalculatePAF

expectedinhypotheticalsituationof‘ideal’(eg,no)riskfactorexposure

Pooledacrosspopulationfromliteraturesearch

2

Translatetoburden

PAF×

DALYsfromIHMEfor

mentalhealthcondition

×

NumberofDALYsfor

non-mentalhealth

conditionattributabletomentalhealthcondition

3

DALYsfornon-mentalhealthcondition

Identify

addressable

burden

attributabletomentalhealthcondition

×

=

Percentburdenaddressable

viamentalhealthcondition

interventions

Addressableburdeninnon-mentalhealthconditionattributabletomentalhealth

condition

Note:Burdeniscalculatedindisability-adjustedlifeyears(DALYs).1Includesmentalhealthdisordersandsubstanceusedisorders.

2Synonymouswithpopulationattributablerisk(PAR).

Source:FionaJ.Charlsonetal.,“Thecontributionofmajordepressiontotheglobalburdenofischemicheartdisease:Acomparativeriskassessment,”BMCMedicine,November2013,Volume11,Number250

McKinsey&Company

Themodelusedthebestavailablesurveydata,statusreports,andevidencefromexpertstoestimate

currentadoptionlevelsforeachinterventionby

countryincomearchetype,usingWorldBank

categoriesofhighincome,upper-middleincome,

lower-middleincome,andlowincome.4Foreach

interventiontype,aramp-upcurvewasassignedto

considertheimplementationtimeneededtoincreaseaccessand,whererelevant,anygapbetween

interventiondeliveryandhealthimpact.

Themodelthencalculatedthepotentialdisease

reductionthatcouldbeachievedbyincreasing

adoptionoftheinterventionfromthecurrentlevelto

90percent(inotherwords,if90percentofeligiblepatientswereabletoaccesstheintervention),

applyingeachinterventioninsequence.

Sequencingwasbasedonthetypeofintervention,withbehavioralandpreventioninterventions

appliedbeforetreatmentforestablisheddiseaseandtreatmentforearlydiseasesequenced

beforemanagementoflaterdisease.Impactwasmeasuredannuallyuntil2050.Exhibit2laysouttheoverallapproach.

Toillustratehowhealthimprovementisscaledovertimeforonedisease,Exhibit3highlightsthestepsfollowedintheexampleofanxietydisorders.

4“WorldBankcountryandlendinggroups,”WorldBank,accessedApril1,2025.

Exhibit2

PrioritizingBrainHealth5

1

2

3

4

5

6

7

Approachtocalculatehealthimprovementthroughinterventions

Analytical

step

Description

Identifyandcategorize

relevanthealthinterventions

Reviewclinicalliteraturetoidentifyscalable,cost-efectiveinterventions,withthehighestpotentialtopreventandtreatdiseaseburden.

Determinehealthinterventione代cacyandadoptionrates

Literaturereviewforeachinterventionineachdiseaseareatoidentifytheefectivenessestimateinrelationtomortalityandmorbidityreduction.

Estimatetimetoseeimpactfromscalinginterventions

Estimateapprox.timerequiredforimplementationrampupandtimelagfrominterventionimplementationtoseeimpactondiseaseburden.

Establishsequencetoapplyhealthinterventions

Environmentalandbehavioralinterventionsapplied?rst,followedbymedicalprevention,andthentherapeuticinterventions.

Calculatediseaseburdenreductionpotentialbyscalinginterventions

Estimateimpactofapplyinghealthinterventionsforeverydisease,country,agegroupandgendersub-groupovertime.

Estimateimpactonlifeexpectancyandhealth-adjustedlifeexpectancy

Estimateimpactinhealth-adjustedlifeexpectancyyearsusingdeathsandYLDvaluesestimatedaspartofearlierstepsinthemodel.

Reviewoutputswithexperts

Inputs/outputstestedandre?nedfollowingreviewbyrelevantexperts.

McKinsey&Company

Calculationsofhealthimprovementthrough

interventionsreliedonsevensteps,outlinedbelow.

1.Identifyandcategorizerelevantinterventions

Healthinterventionswerecategorizedintofourgroups.

—environmental:interventionsrelatedtopolicyandregulation(forexample,alcoholtaxation)andplace-basedinterventions(forexample,

school-basedprogramsfordruguse,needleandsyringeprograms,orworkplaceprogramsforhigh-riskalcoholuse)

—behavioral:interventionsrelatedtoindividualbehavioralchange(forexample,supportforsmokingcessationorweightmanagement

throughlifestylechange)

—healthpromotionandprevention:including

screeningandearlydetection,primarycare,

andmedicinesforprevention(forexample,

antihypertensivesorGLP-1sforobesity)

—therapeutic:interventionssuchasspecialized

care(forexample,nonsurgicalbrainstimulation),

medicinesfortreatment(forexample,

antidepressants),caremanagement,counselingandtalkingtherapies(forexample,peersupportprogramsandpsychotherapy),anddigitaltoolsandtherapies

Theobjectivewastoidentifyhigh-impact,scalableinterventionsthatcouldhavethemostimpacton

reducingdiseaseburdenifscaledmoreeffectivelyandifaccessgapswerebridged.Itdoesnot

representacompletesetofinterventionsthatmightbeavailableinawell-resourcedandcomprehensivehealthsystem.

2.Determinehealthinterventionefficacyandadoptionrates

Interventioneffectiveness.Estimatesof

interventioneffectivenesswereextractedfromsystematicreviewsand,ifnosystematicreviewwasidentified,fromotherclinicalliterature.

Effectivenesswasestimatedseparatelyfor

morbidityandmortality.Formorbidityreduction,themostappropriateavailableoutcomemeasurewas

selected—forexample,changeinsymptomseverity.

Exhibit3

PrioritizingBrainHealth6

Components

Exampleofhealthimprovementthroughinterventions:Anxietydisorders

Step

1·2·3·4·5·6

Description

Clinicalpracticeguidelinesusedtoidentifycorehigh-impact,

scale-ableinterventions

Efectivenessestimates

from

systematicreviews

Adoption

Timerequired

Orderto

Disease

Other

estimates

forimplemen-

applyinter-

burden

impact

takenfrom

WHOsurvey

of21countries

tation(ramp-up)

ventions

reduction

estimates

Interventioncategory

InterventionIntervention

sub-description

category

Therapeutic

Medicines

usedin

Psychiatricmedicines

generalizedanxiety

disorders,eg,SSRIs/SNRIs

Estimateof

efectiveness

Current&additional1

adoptionrates

61%reductionafecting

morbidity

severityonly(YLDdisabilityweight)

HICs:22%68%

UMICs:13%77%

LMICs:9%81%

LICs:9%81%

Timeframe

HICs:5years

UMICs:10years

LMICs:15years

LICs:15years

Sequence

1

HALE/LEimpact

Reduction(2050)

Coveredseparately

24%

HICs:22%68%HICs:5years

UMICs:13%77%UMICs:10years

LMICs:9%81%LMICs:15years

LICs:9%81%LICs:15years

Therapeutic

Talking

therapies

and

counselling

Psycho-

therapeuticapproaches,eg,CBT

andRT

31%reductionafecting

2

13%

morbidity

severityonly(YLDdisabilityweight)

HICs:5years

UMICs:10years

LMICs:15years

LICs:15years

HICs:21%69%

UMICs:12%78%

LMICs:12%78%

LICs:5%85%

Therapeutic

Digital

mental

healthappsforanxiety

Talking

therapies

and

counselling

15%reductionafecting

3

6%

morbidity

severityonly(YLDdisabilityweight)

7Inputsandoutputsreviewedbyinternalexpertsandexternalexpertreviewer

Note:SSRI=selectiveserotoninreuptakeinhibitor;SNRI=serotoninandnorepinephrinereuptakeinhibitor;CBT=cognitivebehavioraltherapy;RT=relaxationtherapy;HIC/UMIC/LMIC/LIC=high-,uppermiddle-,lowermiddle-,andlow-incomecountries.

1Calculatedbytakingthediferencebetweenanaspirationaladoptionrateof90%minusthecurrentadoptionrate.

McKinsey&Company

Whereaninterventionwasonlyapplicabletoa

proportionofthediseaseburden,suchasaspecificagegroup,effectestimateswereappliedonlyto

appropriategroups.Forexample,aschools-basedcannabispreventionprogramwasappliedonlyto

theassociatedburdeninagegroupsfromtento

19years.Efficacywasassumedtobeconsistent

acrosscountryincomearchetypes.Theestimates

usedinthismodelwereintendedasaveragesacrossrelevantpatientpopulationsandmayvaryforspecificsubpopulationsnotconsideredinthemodel.

Interventionadoptionrates.Themodelaimstoestimatetheadditionalimpactofscalingmental

healthinterventionscomparedwiththecurrent

state.Theinterventionadoptionassumptionsusedinthemodelwerebasedonthedifferencebetweencurrentadoptionandaspirationaltargetadoption.

Currentadoptionrateswereestimatedforeach

interventionandcountryincomearchetypeusing

thebestavailableevidencereviewedbyexperts

inthefield.Theaspirationaltargetadoptionwas

assumedtobe90percentinallcases.ThisisbasedontheKennedyForum’sAlignmentforProgress

Goalsfor2033withavisiontoensureparityin

resources,access,quality,andoutcomesonmental

andsubstanceusedisorders,knownasthe90-90-90

PrioritizingBrainHealth7

framework.Theframeworksetsoutatargetfor90percentofindividualstobescreenedformental

healthconditionsorsubstanceusedisorders,90

percenttoreceivetheevidence-basedservicesandsupportstheyneed,and90percentofthosetreatedtomanagetheirsymptomsandachieverecovery.5

Thisdoesnotindicatethatallburdenisaddressed,

anditisnotthemaximumburdenacountrycould

aimtoaddress.Thereareinterventionsnotcapturedinthemodel,andtherewillbeinnovationsoverthe

timeframeofthismodelthatarenotincluded.

3.Estimatetimetoseeimpactfromscalinginterventions

Expandingaccesstointerventionstakestime.

Assumptionsaroundimplementationramp-up

timestoreachpeak(oraspirationaltarget)adoptionwerebuiltintothemodel,tailoredtodifferenttypesofinterventionandtoeachofthefourcountry

incomearchetypes.Theseestimateswerebased

onreal-worldexamplesoftimetoimplementationindifferenthealthsystemcontextsaswellasuniversalhealthcoveragetrends.Theanalysisusedan

S-shapedramp-upcurve,reflectingaslowerinitialadoptionratefollowedbyacceleratedadoptionovertime,tobettersimulatereal-lifescenarios.Ifthere

wasatimelagbetweenaccessinganinterventionandrealizingthehealthbenefitforaspecific

condition,thiswasalsoaccountedforthroughan

adjustmenttotheramp-upcurve.Delaysinseeinghealthbenefitsfromtreatmentarenottypical

formentalandsubstanceusedisordersbutmay

applytosomeoftheotherNCDscapturedinthe

additionalburden.Forexample,smokingcessationsupportnotonlyhasimmediatebenefitsforsomeconditionsbutalsoreducestheriskofdevelopingotherconditionsoversubsequentdecades.

4.Establishasequenceforapplyinghealthinterventions

Foreachincludeddisease,themodelquantified

theimpactofoneormorerelevantinterventions,

applyinganinterventiontomultipleconditions

whereappropriate.Tomoreaccuratelyreflectreal-worldimplementation,theimpactofinterventionswascalculatedsequentially.Theorderofthese

interventionswasdeterminedbytheirtype:

Environmentalandbehavioralinterventions

wereappliedfirst,followedbyhealthpromotion

andpreventivemeasuresandthentherapeutic

interventions.Eachsubsequentintervention’s

potentialimpactwasappliedonlytotheremainingdiseaseburdenafteraccountingforthereductionachievedbythepreviousinterventions.The

sequencingofinterventionswithineachcategory

wasdeterminedinconsultationwithclinicalexpertsinrelevantfields.Thissequencingapproachwas

alsousedtoavoidunintentionallydoublecountingpotentialimpactsanddoesnotreflectreal-life

clinicalpractice,inwhichmultipleinterventionsmaybedeployedsimultaneouslyandtreatmentorder

isbasedonindividualcircumstancesratherthanapredefinedsequence.

5.CalculatediseaseburdenreductionpotentialThemodelestimatedthepotentialreductionin

diseaseburdenforprimaryandassociatedmentalhealthconditionsthroughscalingprovenhealth

interventionsovertime.Theeffectsofapplying

healthinterventionswerecalculatedatthelevelofintervention,disease,country,agegroup(five-yeargroups),andsexfrom2025to2050.

Diseaseburdenreductionforprimarymental

healthconditions.Tocalculatetheaddressable

burdenfromprimarymentalhealthconditions,themodeluseddiseaseburdendatafromtheIHME

GBDdatasetandestimatedtherisk-attributable

burdenwhereapplicabletoensuretheattributableburdenwasmutuallyexclusiveacrossriskfactors.

Abaselinedatasetofdiseaseburden,including

risk-associatedburdenandcause-levelburdenforallmentalandsubstanceusedisordersinscope,

wasgeneratedfortheperiodfrom2025to2050byagegroup(five-yeargroups),sex,andcountry.

Measuresincludedinthemodelwereyearslived

withdisability(YLDs),yearsoflifelosttoprematuremortality(YLLs),meandisabilityweight,incidence,prevalence,anddisease-relateddeaths.

Healthinterventionsandtheireffectswere

implementedsequentiallyovertimeasoutlinedintheprevioussection,beginningwiththoselinkedtomodifiableriskfactors.Subsequently,eachfurther

5“Alignmentforprogressgoalsfor2033:90-90-90,”KennedyForum,accessedApril1,2025.

PrioritizingBrainHealth8

interventionwasappliedtotheresidualcondition-

levelburden.Theinterventionswereappliedto

theappropriateagegroupswhenapplicable.For

instance,school-basedprogramsforalcoholuse

wereimplementedonlyforindividualsunderage

20.Todeterminetheimpact,thediseaseburden

foreachrelevantpopulationwasmultipliedbythe

interventionefficacyrateadjustedfortheadditionalpotentialadoptionrateandtheramp-upfactorfor

theyear(andspecifictothecategoryofinterventionandincomearchetypeofthecountry).

Thepotentialdiseaseburdenreductionwas

estimatedformultiplemeasures,including

incidence,deaths,prevalence,YLDs,YLLs,and

DALYs.Reductionsinincidencewerecalculated

usingtheIHMEdiseaseburdenasthebaseline

foreachyearandapplyingthereductionimpact

(effectivenessadjustedforadditionalpotential

adoption)forpreventiveinterventionsasdescribedpreviously.Toestimatetheimpactondisease-

relateddeaths,thechangeindeathratewas

calculatedbyconsideringboththereductionin

mortalityfrominterventionsandthepreviously

calculatedreductioninincidence.Themodel

estimatedbaselinerecoveriesusingIHME

prevalence,incidence,anddeathvalues,andit

assessedtheimpactofanycurativeinterventions.

Baselinemeandisabilityweightwasdetermined

usingIHMEprevalenceandYLDvalues,withthe

impactestimatedbasedonthepotentialeffectof

interventionsonmorbidity(forexample,reduction

infrequency,duration,orseverityofsymptoms).Theimpactonprevalencewasestimatedbasedonthe

newlycalculatedincidence,deaths,andrecoveries.

Next,theimpactonYLDswascalculatedbased

ontheestimatedimpactonprevalenceandmean

disabilityweight(morbidity),whiletheimpacton

YLLswasderivedfromthedeathsestimatedinthe

previousstep.Finally,outputswereextrapolated

fordiseasesnotincludedinthedetailedanalysis,

assumingthesameaverageimpactratefordiseaseswithinthelevel2diseasecategoryascategorizedin

theIHMEGBDdataset.Therewasonlyonediseasegroupforwhichthisextrapolationwasperformed:

othermentaldisorders.

Estimatediseaseburdenreductionforassociated

mentalhealthconditionburden.Toestimatethe

potentialreductioninadditionaldiseaseburden

associatedwithapreexistingmentalorsubstance

usedisorder(asdescribedinthepreviousstep,

“Associatedburdenfrompreexistingmentalhealth

conditionsexacerbatingotherNCDs”),themodel

usesasimplifyingassumptionofadirectrelationshipbetweeneachconditionpair.Itisimplicitinthis

premisethattheconditionpairrelationshipisboth

linearandcausalthatis,thata10percentreductioninanxietydisorderdiseaseburdenwouldleadtoa

10percentreductioninanyadditionalassociated

burden(fromnon–mentalhealthNCDs).Thereis

insufficientevidencetotestthispremise,anditis

beyondthescopeofthisworktodoso.Thiscouldbeavaluableareaforfurtherresearch.

6.Estimateimpactonlifeexpectancy

andhealth-adjustedlifeexpectancy

Toestimatetheimpactofscalingmentalhealth

interventionsonlifeexpectancy(LE)andhealth-

adjustedlifeexpectancy(HALE),themodel

recalculatedtheunderlyinglifetablesusingthe

remainingdeathsandYLDpercapitaderivedfromthepreviousstepsafterscalingmentalhealth

interventions.Comparingpre-andpostinterventionvaluesforLEandHALEresultedinadeterminationoftheincreaseinLEandHALEthatwasduetotheappliedhealthinterventions.6

7.Reviewoutputswithexperts

Allmodelinputsgatheredbytheresearchteamandmodeloutputsfromthemodelwerereviewedby

clinicalexpertsinspecificdiseaseareasinmentalhealthandsubstanceusedisorders.Theseexpertsassessedthebasketofinterventionsidentifiedforeachdisease,thepotentialforincreaseduptake,

theorderofimplementation,andtheoverallhealthimpactacrossdifferentcountryincomegroups.

6HaidongWangetal.,“Globalage-sex-specificfertility,mortality,healthylifeexpectancy(HALE),andpopulationestimatesin204countries

andterritories,1950–2019:AcomprehensivedemographicanalysisfortheGlobalBurdenofDiseaseStudy2019,”TheLancet,October2020,Volume396,Number10258.AbridgedlifetabledefinitionsbyM.Greenwood,“Discussiononthevalueoflife-tablesinstatisticalresearch,”

JournaloftheRoyalStatisticalSociety,June1922,Volume85,Number4;andChinLongChiang,TheLifeTableandItsApplication,KriegerPublishingCompany,1984.

PrioritizingBrainHealth9

Thisprocessprovidedadditionalassuranceof

appropriatec

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論