版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Statisticsfor
BusinessandEconomics(14e)
MetricVersionAnderson,Sweeney,Williams,Camm,Cochran,Fry,Ohlmann?2020CengageLearning1?2020Cengage.Maynotbescanned,copiedorduplicated,orpostedtoapubliclyaccessiblewebsite,inwholeorinpart,exceptforuseaspermittedinalicensedistributedwithacertainproductorserviceorotherwiseonapassword-protectedwebsiteorschool-approvedlearningmanagementsystemforclassroomuse.Chapter1-DataandStatistics1.1-ApplicationsinBusinessandEconomics1.2-Data1.3-DataSources1.4-DescriptiveStatistics1.5-StatisticalInference1.6-Analytics1.7-BigDataandDataMining1.8-ComputersandStatisticalAnalysis1.9-EthicalGuidelinesforStatisticalPractice2WhatIsStatistics?Thetermstatisticscanrefertonumericalfactssuchasaverages,medians,percentages,andmaximumsthathelpusunderstandavarietyofbusinessandeconomicsituations.Statisticscanalsorefertotheartandscienceofcollecting,analyzing,presenting,andinterpretingdata.3ApplicationsinBusinessandEconomics(1of2)AccountingPublicaccountingfirmsusestatisticalsamplingprocedureswhenconductingauditsfortheirclients.EconomicsEconomistsusestatisticalinformationinmakingforecastsaboutthefutureoftheeconomyorsomeaspectofit.FinanceFinancialadvisorsuseprice-earningsratiosanddividendyieldstoguidetheirinvestmentadvice.4ApplicationsinBusinessandEconomics(2of2)MarketingElectronicpoint-of-salescannersatretailcheckoutcountersareusedtocollectdataforavarietyofmarketingresearchapplications.ProductionAvarietyofstatisticalqualitycontrolchartsareusedtomonitortheoutputofaproductionprocess.InformationSystemsAvarietyofstatisticalinformationhelpsadministratorsassesstheperformanceofcomputernetworks.5DataandDataSetsDataarethefactsandfigurescollected,analyzed,andsummarizedforpresentationandinterpretation.Allthedatacollectedinaparticularstudyarereferredtoasthedatasetforthestudy.6Elements,Variables,andObservationsElementsaretheentitiesonwhichdataarecollected.Avariableisacharacteristicofinterestfortheelements.Thesetofmeasurementsobtainedforaparticularelementiscalledanobservation.Adatasetwithnelementscontainsnobservations.Thetotalnumberofdatavaluesinacompletedatasetisthenumberofelementsmultipliedbythenumberofvariables.7Data,DataSets,Elements,Variables,andObservationsCompanyStockExchangeAnnualSalesinmillionsofdollarsEarningspershareindollarsDataramNQ73.100.86EnergySouthN74.001.67KeystoneN365.700.86LandCareNQ111.400.33PsychemedicsN17.600.138ScalesofMeasurement(1of6)ScalesofmeasurementincludeNominalOrdinalIntervalRatioThescaledeterminestheamountofinformationcontainedinthedata.Thescaleindicatesthedatasummarizationandstatisticalanalysesthataremostappropriate.9ScalesofMeasurement(2of6)Nominalscale Dataarelabelsornamesusedtoidentifyanattributeoftheelement.Anonnumericlabelornumericcodemaybeused.ExampleStudentsofauniversityareclassifiedbytheschoolinwhichtheyareenrolledusinganonnumericlabelsuchasBusiness,Humanities,Education,andsoon.Alternatively,anumericcodecouldbeusedfortheschoolvariable(e.g.,1denotesBusiness,2denotesHumanities,3denotesEducation,andsoon).10ScalesofMeasurement(3of6)OrdinalscaleThedatahavethepropertiesofnominaldataandtheorderorrankofthedataismeaningful.Anonnumericlabelornumericcodemaybeused.ExampleStudentsofauniversityareclassifiedbytheirclassstandingusinganonnumericlabelsuchasFreshman,Sophomore,Junior,orSenior.Alternatively,anumericcodecouldbeusedfortheclassstandingvariable(e.g.,1denotesFreshman,2denotesSophomore,andsoon).11ScalesofMeasurement(4of6)IntervalscaleThedatahavethepropertiesofordinaldata,andtheintervalbetweenobservationsisexpressedintermsofafixedunitofmeasure.Intervaldataarealwaysnumeric.ExampleMelissahasanSATscoreof1985,whileKevinhasanSATscoreof1880.Melissascored105pointsmorethanKevin.12ScalesofMeasurement(5of6)RatioscaleDatahaveallthepropertiesofintervaldataandtheratiooftwovaluesismeaningful.Ratiodataarealwaysnumerical.Zerovalueisincludedinthescale.Example:Priceofabookataretailstoreis$200,whilethepriceofthesamebooksoldonlineis$100.Theratiopropertyshowsthatretailstoreschargetwicetheonlineprice.13CategoricalandQuantitativeDataDatacanbefurtherclassifiedasbeingcategoricalorquantitative.Thestatisticalanalysisthatisappropriatedependsonwhetherthedataforthevariablearecategoricalorquantitative.Ingeneral,therearemorealternativesforstatisticalanalysiswhenthedataarequantitative.14CategoricalDataLabelsornamesareusedtoidentifyanattributeofeachelementOftenreferredtoasqualitativedataUseeitherthenominalorordinalscaleofmeasurementCanbeeithernumericornonnumericAppropriatestatisticalanalysesareratherlimited15QuantitativeDataQuantitativedataindicatehowmanyorhowmuch.Quantitativedataarealwaysnumeric.Ordinaryarithmeticoperationsaremeaningfulforquantitativedata.16ScalesofMeasurement(6of6)17Cross-SectionalDataCross-sectionaldataarecollectedatthesameorapproximatelythesamepointintime.ExampleDatadetailingthenumberofbuildingpermitsissuedinNovember2013ineachofthecountiesofOhio.18TimeSeriesData(1of2)Timeseriesdataarecollectedoverseveraltimeperiods.ExampleDatadetailingthenumberofbuildingpermitsissuedinLucasCounty,Ohioineachofthelast36months.Graphsoftimeseriesdatahelpanalystsunderstandwhathappenedinthepastidentifyanytrendsovertime,andprojectfuturelevelsforthetimeseries19TimeSeriesData(2of2)GraphofTimeSeriesData20DataSources(1of5)ExistingSourcesInternalcompanyrecords–almostanydepartmentBusinessdatabaseservices–DowJones&Co.Governmentagencies–U.S.DepartmentofLaborIndustryassociations–TravelIndustryAssociationofAmericaSpecial-interestorganizations–GraduateManagementAdmissionCouncil(GMAT)Internet–moreandmorefirms21DataSources(2of5)DataAvailableFromInternalCompanyRecordsRecordSomeoftheDataAvailableEmployeerecordsName,address,socialsecuritynumberProductionrecordsPartnumber,quantityproduced,directlaborcost,materialcostInventoryrecordsPartnumber,quantityinstock,
reorderlevel,economicorderquantitySalesrecordsProductnumber,salesvolume,sales
volumebyregionCreditrecordsCustomername,creditlimit,accounts
receivablebalanceCustomerprofileAge,gender,income,householdsize22DataSources(3of5)DataAvailableFromSelectedGovernmentAgenciesU.S.GovernmentAgencyWebaddressSomeoftheDataAvailableCensusBureauPopulationdata,numberof
households,householdincomeFederalReserveBoardDataonmoneysupply,exchange
rates,discountratesOfficeofMgmt.&
Budget/ombDataonrevenue,expenditures,debt
offederalgovernmentDepartmentof
CommerceDataonbusinessactivity,valueof
shipments,profitbyindustryBureauofLaborStatisticsCustomerspending,unemployment
rate,hourlyearnings,safetyrecord23DataSources(4of5)StatisticalStudies–ObservationalInobservational(nonexperimental)studiesnoattemptismadetocontrolorinfluencethevariablesofinterest. Example-SurveyStudiesofsmokersandnonsmokersareobservationalstudiesbecauseresearchersdonotdetermineorcontrolwhowillsmokeandwhowillnotsmoke.24DataSources(5of5)StatisticalStudies–ExperimentalInexperimentalstudiesthevariableofinterestisfirstidentified.Thenoneormoreothervariablesareidentifiedandcontrolledsothatdatacanbeobtainedabouthowtheyinfluencethevariableofinterest.Thelargestexperimentalstudyeverconductedisbelievedtobethe1954PublicHealthServiceexperimentfortheSalkpoliovaccine.NearlytwomillionU.S.children(grades1-3)wereselected.25DataAcquisitionConsiderationsTimeRequirementSearchingforinformationcanbetimeconsuming.Informationmaynolongerbeusefulbythetimeitisavailable.CostofAcquisitionOrganizationsoftenchargeforinformationevenwhenitisnottheirprimarybusinessactivity.DataErrorsUsinganydatathathappentobeavailableorwereacquiredwithlittlecarecanleadtomisleadinginformation.26DescriptiveStatisticsMostofthestatisticalinformationinnewspapers,magazines,companyreports,andotherpublicationsconsistsofdatathataresummarizedandpresentedinaformthatiseasytounderstand.Suchsummariesofdata,whichmaybetabular,graphical,ornumerical,arereferredtoasdescriptivestatistics.ExampleThemanagerofHudsonAutowouldliketohaveabetterunderstandingofthecostofpartsusedintheenginetune-upsperformedinhershop.Sheexamines50customerinvoicesfortune-ups.Thecostsofparts,roundedtothenearestdollar,arelistedonthenextslide.27Example:HudsonAutoRepairSampleofPartsCost($)for50Tune-ups91,78,93,57,75,52,99,80,97,6271,69,72,89,66,75,79,75,72,76104,74,62,68,97,105,77,65,80,10985,97,88,68,83,68,71,69,67,7462,82,98,101,79,105,79,69,62,7328TabularSummary:FrequencyandPercentFrequencyPartsCost($)FrequencyPercentFrequency50-5924%60-691326%70-791632%80-89714%90-99714%100-109510%TOTAL50100%29GraphicalSummary:HistogramExample:HudsonAuto30NumericalDescriptiveStatisticsThemostcommonnumericaldescriptivestatisticisthemean(oraverage).Themeandemonstratesameasureofthecentraltendency,orcentrallocationofthedataforavariable.Hudson’smeancostofparts,basedonthe50tune-upsstudiedis$79(foundbysummingupthe50costvaluesandthendividingby50).31StatisticalInferencePopulation:Thesetofallelementsofinterestinaparticularstudy.Sample:Asubsetofthepopulation.Statisticalinference:Theprocessofusingdataobtainedfromasampletomakeestimatesandtesthypothesesaboutthecharacteristicsofapopulation.Census:Collectingdatafortheentirepopulation.Samplesurvey:Collectingdataforasample.32ProcessofStatisticalInferenceExample:HudsonAuto33Analytics
Analyticsisthescientificprocessoftransformingdataintoinsightformakingbetterdecisions.Techniques:Descriptiveanalytics:Thisdescribeswhathashappenedinthepast.Predictiveanalytics:Usemodelsconstructedfrompastdatatopredictthefutureortoassesstheimpactofonevariableonanother.Prescriptiveanalytics:Thesetofanalyticaltechniquesthatyieldabestcourseofaction.34BigDataandDataMiningBigdata:Largeandcomplexdataset.ThreeV’sofBigdata:Volume:AmountofavailabledataVelocity:SpeedatwhichdataiscollectedandprocessedVariety:Differentdatatypes35DataWarehousingDatawarehousingistheprocessofcapturing,storing,andmaintainingthedata.Organizationsobtainlargeamountsofdataonadailybasisbymeansofmagneticcardreaders,barcodescanners,pointofsaleterminals,andtouchscreenmonitors.Wal-Martcapturesdataon20-30milliontransactionsperday.Visaprocesses6,800paymenttransactionspersecond.36DataMiningMethodsfordevelopingusefuldecision-makinginformationfromlargedatabases.Usingacombinationofproceduresfromstatistics,mathematics,andcomputerscience,analysts“minethedata”toconvertitintousefulinformation.Themosteffectivedataminingsystemsuseautomatedprocedurestodiscoverrelationshipsinthedataandpredictfutureoutcomespromptedbygeneralandevenvaguequeriesbytheuser.37DataMiningApplicationsThemajorapplicationsofdatamininghavebeenmadebycompanieswithastrongconsumerfocussuchasretail,financial,andcommunicationfirms.Dataminingisusedtoidentifyrelatedproductsthatcustomerswhohavealreadypurchasedaspecificproductarealsolikelytopurchase(andthenpop-upsareusedtodrawattentiontothoserelatedproducts).Dataminingisalsousedtoidentifycustomerswhoshouldreceivespecialdiscountoffersbasedontheirpastpurchasingvolumes.38DataMiningRequirementsStatisticalmethodologysuchasmultipleregression,logisticregression,andcorrelationareheavilyused.Alsoneededarecomputersciencetechnologiesinvolvingartificialintelligenceandmachinelearning.Asignificantinvestmentintimeandmoneyisrequiredaswell.39DataMiningModelReliabilityFindingastatisticalmodelthatworkswellforaparticularsampleofdatadoesnotnecessarilymeanthatitcanbereliablyappliedtootherdata.Withtheenormousamountofdat
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)機(jī)器人科技實(shí)驗(yàn)室方案
- 醫(yī)院公共區(qū)域美化方案
- 小學(xué)創(chuàng)客教育活動(dòng)方案
- 鋼結(jié)構(gòu)防腐涂裝技術(shù)實(shí)施方案
- 鋼結(jié)構(gòu)防火處理技術(shù)方案
- 核能發(fā)電廠運(yùn)行與維護(hù)手冊(cè)(標(biāo)準(zhǔn)版)
- 小學(xué)生活垃圾分類(lèi)設(shè)施建設(shè)方案
- 婦幼保健院康復(fù)治療設(shè)施設(shè)計(jì)方案
- 企業(yè)品牌價(jià)值評(píng)估與提升手冊(cè)
- 礦業(yè)設(shè)備維修與維護(hù)手冊(cè)
- 2026年無(wú)錫工藝職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)帶答案解析
- 【低空經(jīng)濟(jì)】無(wú)人機(jī)AI巡檢系統(tǒng)設(shè)計(jì)方案
- 2025年湖南省公務(wù)員錄用考試錄用考試《申論》標(biāo)準(zhǔn)試卷及答案
- 漢字的傳播教學(xué)課件
- 行政崗位面試問(wèn)題庫(kù)及應(yīng)對(duì)策略
- 2025衢州市市級(jí)機(jī)關(guān)事業(yè)單位編外招聘77人筆試試題附答案解析
- 2025年中信金融業(yè)務(wù)面試題庫(kù)及答案
- 零碳園區(qū)數(shù)字化建筑設(shè)計(jì)方案
- GB/T 46607.1-2025塑料熱固性粉末模塑料(PMCs)試樣的制備第1部分:一般原理及多用途試樣的制備
- 紫金礦業(yè)招聘面試題及答案
- 實(shí)施指南(2025)《HGT 5987-2021 硫酸行業(yè)綠色工廠評(píng)價(jià)要求》
評(píng)論
0/150
提交評(píng)論