2026屆浙江省杭州市數(shù)學(xué)高二第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2026屆浙江省杭州市數(shù)學(xué)高二第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2026屆浙江省杭州市數(shù)學(xué)高二第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2026屆浙江省杭州市數(shù)學(xué)高二第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2026屆浙江省杭州市數(shù)學(xué)高二第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆浙江省杭州市數(shù)學(xué)高二第一學(xué)期期末監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在三棱錐中,,,,點(diǎn)在平面內(nèi),且,設(shè)異面直線與所成角為,則的最大值為()A. B.C. D.2.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.C. D.3.準(zhǔn)線方程為的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.4.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題5.某校開展研學(xué)活動(dòng)時(shí)進(jìn)行勞動(dòng)技能比賽,通過初選,選出共6名同學(xué)進(jìn)行決賽,決出第1名到第6名的名次(沒有并列名次),和去詢問成績,回答者對說“很遺?,你和都末拿到冠軍;對說“你當(dāng)然不是最差的”.試從這個(gè)回答中分析這6人的名次排列順序可能出現(xiàn)的結(jié)果有()A.720種 B.600種C.480種 D.384種6.在數(shù)列中,,則等于A. B.C. D.7.如圖,空間四邊形中,,,,且,,則()A. B.C. D.8.在等比數(shù)列中,若,則公比()A. B.C.2 D.39.已知點(diǎn),Q是圓上的動(dòng)點(diǎn),則線段長的最小值為()A.3 B.4C.5 D.610.雙曲線的漸近線方程為()A. B.C. D.11.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題12.若存在兩個(gè)不相等的正實(shí)數(shù)x,y,使得成立,則實(shí)數(shù)m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位空間向量,,滿足,.若空間向量滿足,且對于任意實(shí)數(shù),的最小值是2,則的最小值是___________.14.拋物線的準(zhǔn)線方程是________15.若點(diǎn)為圓的弦的中點(diǎn),則弦所在直線方程為________.16.若函數(shù)處取極值,則___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:,是坐標(biāo)原點(diǎn),,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,過作的外角的平分線的垂線,垂足為,且(1)求橢圓方程:(2)設(shè)直線:與橢圓交于,兩點(diǎn),且直線,,的斜率之和為0(其中為坐標(biāo)原點(diǎn))①求證:直線經(jīng)過定點(diǎn),并求出定點(diǎn)坐標(biāo):②求面積的最大值18.(12分)已知數(shù)列為正項(xiàng)等比數(shù)列,滿足,,數(shù)列滿足(1)求數(shù)列,的通項(xiàng)公式;(2)若數(shù)列的前n項(xiàng)和為,數(shù)列滿足,證明:數(shù)列的前n項(xiàng)和19.(12分)已知直線,以點(diǎn)為圓心的圓C與直線l相切(1)求圓C的標(biāo)方程;(2)過點(diǎn)的直線交圓C于A,B兩點(diǎn),且,求的方程20.(12分)已知數(shù)列,,其中,是各項(xiàng)均為正數(shù)的等比數(shù)列,滿足,,且(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和21.(12分)已知數(shù)列滿足,,,.從①,②這兩個(gè)條件中任選一個(gè)填在橫線上,并完成下面問題.(1)寫出、,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)年月初,浙江杭州、寧波、紹興三地相繼爆發(fā)新冠肺炎疫情.疫情期間口罩需求量大增,某醫(yī)療器械公司開始生產(chǎn)口罩,并且對所生產(chǎn)口罩的質(zhì)量按指標(biāo)測試分?jǐn)?shù)進(jìn)行劃分,其中分?jǐn)?shù)不小于的為合格品,否則為不合格品,現(xiàn)隨機(jī)抽取件口罩進(jìn)行檢測,其結(jié)果如表:測試分?jǐn)?shù)數(shù)量(1)根據(jù)表中數(shù)據(jù),估計(jì)該公司生產(chǎn)口罩的不合格率;(2)若用分層抽樣的方式按是否合格從所生產(chǎn)口罩中抽取件,再從這件口罩中隨機(jī)抽取件,求這件口罩全是合格品的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)線段的中點(diǎn)為,連接,過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),證明出平面,然后以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè),其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設(shè)線段的中點(diǎn)為,連接,,為的中點(diǎn),則,,則,,同理可得,,,平面,過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)?,所以,為等邊三角形,故為的中點(diǎn),平面,平面,則,,,平面,以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,因?yàn)槭沁呴L為的等邊三角形,為的中點(diǎn),則,則、、、,由于點(diǎn)在平面內(nèi),可設(shè),其中,且,從而,因?yàn)?,則,所以,,故當(dāng)時(shí),有最大值,即,故,即有最大值,所以,.故選:D.【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.2、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點(diǎn)坐標(biāo)以及漸近線方程,由點(diǎn)到直線的距離公式計(jì)算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點(diǎn)坐標(biāo)為,其漸近線方程為,即,則其焦點(diǎn)到漸近線的距離;故選D.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點(diǎn)坐標(biāo).3、D【解析】的準(zhǔn)線方程為.【詳解】的準(zhǔn)線方程為.故選:D.4、A【解析】根據(jù)復(fù)合命題的真假表即可得出結(jié)果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個(gè)真命題,所以為真命題,即為假命題,為真命題.故選:A5、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問題是4個(gè)元素在4個(gè)位置全排列,根據(jù)分步計(jì)數(shù)原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計(jì)數(shù)原理知有種情況故選:D.6、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點(diǎn)睛:對于含有的數(shù)列,我們看作擺動(dòng)數(shù)列,往往逐一列舉出來觀察前面有限項(xiàng)的規(guī)律7、C【解析】根據(jù)空間向量的線性運(yùn)算即可求解.【詳解】因?yàn)?,又因?yàn)?,,所?故選:C8、C【解析】由題得,化簡即得解.【詳解】因?yàn)?,所以,所以,解?故選:C9、A【解析】根據(jù)圓的幾何性質(zhì)轉(zhuǎn)化為圓心與點(diǎn)的距離加上半徑即可得解.【詳解】圓的圓心為,半徑為,所以,圓上點(diǎn)在線段上時(shí),,故選:A10、B【解析】把雙曲線的標(biāo)準(zhǔn)方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點(diǎn)睛】本題考查了雙曲線的標(biāo)準(zhǔn)方程與簡單的幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題11、D【解析】因?yàn)槭钦婷},是假命題,所以是假命題,選項(xiàng)A錯(cuò)誤,是真命題,選項(xiàng)B錯(cuò)誤,是假命題,選項(xiàng)C錯(cuò)誤,是真命題,選項(xiàng)D正確,故選D.考點(diǎn):真值表的應(yīng)用.12、D【解析】將給定等式變形并構(gòu)造函數(shù),由函數(shù)的圖象與垂直于y軸的直線有兩個(gè)公共點(diǎn)推理作答.【詳解】因,令,則存在兩個(gè)不相等的正實(shí)數(shù)x,y,使得,即存在垂直于y軸的直線與函數(shù)的圖象有兩個(gè)公共點(diǎn),,,而,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,則垂直于y軸的直線與函數(shù)的圖象最多只有1個(gè)公共點(diǎn),不符合要求,當(dāng)時(shí),由得,當(dāng)時(shí),,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,令,,令,則,即在上單調(diào)遞增,,即,在上單調(diào)遞增,則有當(dāng)時(shí),,,而函數(shù)在上單調(diào)遞增,取,則,而,因此,存在垂直于y軸的直線(),與函數(shù)的圖象有兩個(gè)公共點(diǎn),所以實(shí)數(shù)m的取值范圍是.故選:D【點(diǎn)睛】思路點(diǎn)睛:涉及雙變量的等式或不等式問題,把雙變量的等式或不等式轉(zhuǎn)化為一元變量問題求解,途徑都是構(gòu)造一元函數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以,方向?yàn)檩S,垂直于,方向?yàn)檩S建立空間直角坐標(biāo)系,根據(jù)條件求得坐標(biāo),由二次函數(shù)求最值即可求得最小值.【詳解】以,方向?yàn)檩S,垂直于,方向?yàn)檩S建立空間直角坐標(biāo)系,則,由可設(shè),由是單位空間向量可得,由可設(shè),,當(dāng),的最小值是2,所以,取,,,當(dāng)時(shí),最小值為.故答案為:.14、【解析】將拋物線方程化為標(biāo)準(zhǔn)形式,從而得到準(zhǔn)線方程.【詳解】拋物線方程可化為:拋物線準(zhǔn)線方程為:故答案為【點(diǎn)睛】本題考查拋物線準(zhǔn)線的求解,易錯(cuò)點(diǎn)是未將拋物線方程化為標(biāo)準(zhǔn)方程.15、【解析】因?yàn)闉閳A的弦的中點(diǎn),所以圓心坐標(biāo)為,,所在直線方程為,化簡為,故答案為.考點(diǎn):1、兩直線垂直斜率的關(guān)系;2、點(diǎn)斜式求直線方程.16、3【解析】=.因?yàn)閒(x)在1處取極值,所以1是f′(x)=0的根,將x=1代入得a=3.故答案為3.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①證明見解析,;②.【解析】(1)根據(jù)橢圓的定義以及角平分線的性質(zhì)可得,,結(jié)合點(diǎn)在橢圓上,以及即可求出的值,進(jìn)而可得橢圓的方程.(2)①設(shè),,聯(lián)立直線與橢圓方程,求得,,利用斜率之和等于得出關(guān)于的方程,解得即可得所過的定點(diǎn),②由弦長公式求出,點(diǎn)到直線的距離公式求得高,由面積公式表示三角形的面積,利用基本不等式即可求最值.【詳解】(1)如圖,由題意可知,由橢圓定義知,則,連接,所以,所以又在橢圓上則,解得:,,所以橢圓的方程為:;(2)①證明:設(shè),,聯(lián)立,整理可得:,所以,可得,,,設(shè)直線,,的斜率為,,,因?yàn)橹本€,,的斜率之和為0,所以,即所以,由,所以,所以直線恒過定點(diǎn);②由①可得:,原點(diǎn)到直線的距離,所以,因?yàn)?,?dāng)且僅當(dāng)時(shí),即,即時(shí)取等號(hào),所以,即面積的最大值為1【點(diǎn)睛】解決圓錐曲線中的范圍或最值問題時(shí),若題目的條件和結(jié)論能體現(xiàn)出明確的函數(shù)關(guān)系,則可先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時(shí)常從以下幾個(gè)方面考慮:18、(1),(2)證明見解析【解析】(1)將已知條件用首項(xiàng)和公比表示,聯(lián)立方程組即可求解數(shù)列的通項(xiàng)公式,然后由對數(shù)的運(yùn)算性質(zhì)即可得數(shù)列的通項(xiàng)公式;(2)由(1)求出,然后利用裂項(xiàng)相消求和法求出數(shù)列的前n項(xiàng)和,即可證明.【小問1詳解】解:設(shè)等比數(shù)列的公比為,由題意,得,即,解得或(舍),又,所以,所以,;【小問2詳解】解:,所以,所以19、(1)(2)或【解析】(1)根據(jù)點(diǎn)到直線的距離公式求出半徑,即可得到圓C的標(biāo)方程;(2)根據(jù)弦長公式可求出圓心C到直線的距離,再根據(jù)點(diǎn)到直線的距離公式結(jié)合分類討論思想即可求出【小問1詳解】設(shè)圓C的半徑為r,∵C與l相切,∴,∴圓C的標(biāo)準(zhǔn)方程為【小問2詳解】由可得圓心C到直線的距離∴當(dāng)?shù)男甭什淮嬖跁r(shí),其方程為,此時(shí)圓心到的距離為3,符合條件;當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè),圓心C到直線的距離,解得,此時(shí)的方程為,即綜上,的方程為或20、(1),(2)【解析】(1)利用公式法,基本量代換求出數(shù)列,的通項(xiàng)公式;(2)利用錯(cuò)位相減法求和.【小問1詳解】設(shè)等比數(shù)列的公比為q,因?yàn)?,所以,所以.所以,所以,所以.所以,所以,【小?詳解】,所以,,所以.所以21、(1)條件選擇見解析,,,(2)【解析】(1)選①,推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得,并可求得、;選②,推導(dǎo)出數(shù)列是等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數(shù)、奇數(shù)兩種情況討論,結(jié)合并項(xiàng)求和法以及等比數(shù)列求和公式可求得.【小問1詳解】解:若選①,,且,故數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,,故;若選②,,所以,,且,故數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,,故,所以,,故,.【小問2詳解】解:由(1)可知,則,所以,.當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.綜上所述,.22、(1);(2).【解析】(1)由題意知分?jǐn)?shù)小于的產(chǎn)品為不合格品,故有件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論