版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省江陰市暨陽中學(xué)2026屆數(shù)學(xué)高二第一學(xué)期期末達(dá)標(biāo)測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.2.在中,a,b,c分別為角A,B,C的對邊,已知,,的面積為,則()A. B.C. D.3.函數(shù)的圖象如圖所示,則下列大小關(guān)系正確的是()A.B.C.D.4.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教士偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2021這2020個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項數(shù)為()A. B.C. D.5.已知空間向量,則()A. B.C. D.6.設(shè)等差數(shù)列,的前n項和分別是,,若,則()A. B.C. D.7.如圖,已知二面角平面角的大小為,其棱上有、兩點,、分別在這個二面角的兩個半平面內(nèi),且都與垂直.已知,,則()A. B.C. D.8.在正項等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.329.在等比數(shù)列中,,,則等于()A. B.5C. D.910.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,11.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機(jī)數(shù)表選取3個個體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.1412.在平面區(qū)域內(nèi)隨機(jī)投入一點P,則點P的坐標(biāo)滿足不等式的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在下列所示電路圖中,下列說法正確的是____(填序號)(1)如圖①所示,開關(guān)A閉合是燈泡B亮的充分不必要條件;(2)如圖②所示,開關(guān)A閉合是燈泡B亮的必要不充分條件;(3)如圖③所示,開關(guān)A閉合是燈泡B亮的充要條件;(4)如圖④所示,開關(guān)A閉合是燈泡B亮的必要不充分條件14.古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面上到兩定點A,B的距離之比為常數(shù)的點的軌跡是—個圓心在直線上的圓.該圓被稱為阿氏圓,如圖,在長方體中,,點E在棱上,,動點P滿足,若點P在平面內(nèi)運動,則點P對應(yīng)的軌跡的面積是___________;F為的中點,則三棱錐體積的最小值為___________.15.如圖,在棱長為1的正方體中,點M為線段上的動點,下列四個結(jié)論:①存在點M,使得直線AM與直線夾角為30°;②存在點M,使得與平面夾角的正弦值為;③存在點M,使得三棱錐體積為;④存在點M,使得,其中為二面角的大小,為直線與直線AB所成的角則上述結(jié)論正確的有______.(填上正確結(jié)論的序號)16.曲線在點M(π,0)處的切線方程為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側(cè)面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當(dāng)直線與平面所成角的正弦值為時,求線段BD的長18.(12分)已知點,,雙曲線C上除頂點外任一點滿足直線RM與QM的斜率之積為4.(1)求C方程;(2)若直線l過C上的一點P,且與C的漸近線相交于A,B兩點,點A,B分別位于第一、第二象限,,求的最小值.19.(12分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.20.(12分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.21.(12分)設(shè)數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和為.22.(10分)已知等差數(shù)列前n項和為,,,若對任意的正整數(shù)n成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)四面體的性質(zhì),結(jié)合線面垂直的判定定理、球的性質(zhì)、正弦定理進(jìn)行求解即可.【詳解】由圖設(shè)點為中點,連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長線與此大圓交于點.在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設(shè)三角形的外接圓圓心為點,則面,有,則,設(shè)的外接圓圓心為點,則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點,由,所以,故選:C.【點睛】關(guān)鍵點睛:運用正弦定理、勾股定理、線面垂直的判定定理是解題的關(guān)鍵.2、C【解析】利用面積公式,求出,進(jìn)而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因為的面積為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C3、C【解析】根據(jù)導(dǎo)數(shù)的幾何意義可得答案.【詳解】因為函數(shù)在某點處的導(dǎo)數(shù)值表示的是此點處切線的斜率,所以由圖可得,故選:C4、C【解析】由題設(shè)且,應(yīng)用不等式求的范圍,即可確定項數(shù).【詳解】由題設(shè),且,所以,可得且.所以此數(shù)列的項數(shù)為.故選:C5、C【解析】A利用向量模長的坐標(biāo)表示判斷;B根據(jù)向量平行的判定,是否存在實數(shù)使即可判斷;C向量數(shù)量積的坐標(biāo)表示求即可判斷;D利用向量坐標(biāo)的線性運算及數(shù)量積的坐標(biāo)表示求即可.【詳解】因為,所以A不正確:因為不存在實數(shù)使,所以B不正確;因為,故,所以C正確;因為,所以,所以D不正確故選:C6、B【解析】利用求解.【詳解】解:因為等差數(shù)列,的前n項和分別是,所以.故選:B7、C【解析】以、為鄰邊作平行四邊形,連接,計算出、的長,證明出,利用勾股定理可求得的長.【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因為,,則,又因為,,,故二面角的平面角為,因為四邊形為平行四邊形,則,,因為,故為等邊三角形,則,,則,,,故平面,因為平面,則,故.故選:C.8、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因為和為方程的兩根,所以,又因為數(shù)列是等比數(shù)列,所以,故選:C9、D【解析】由等比數(shù)列的項求公比,進(jìn)而求即可.【詳解】由題設(shè),,∴故選:D10、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.11、D【解析】由隨機(jī)數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.12、A【解析】根據(jù)題意作出圖形,進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、(1)(2)(3)【解析】充分不必要條件是該條件成立時,可推出結(jié)果,但結(jié)果不一定需要該條件成立;必要條件是有結(jié)果必須有這一條件,但是有這一條件還不夠;充要條件是條件和結(jié)果可以互推;條件和結(jié)果沒有互推關(guān)系的是既不充分也不必要條件【詳解】(1)開關(guān)閉合,燈泡亮;而燈泡亮?xí)r,開關(guān)不一定閉合,所以開關(guān)閉合是燈泡亮的充分不必要條件,選項(1)正確.(2)開關(guān)閉合,燈泡不一定亮;而燈泡亮?xí)r,開關(guān)必須閉合,所以開關(guān)閉合是燈泡亮的必要不充分條件,選項(2)正確.(3)開關(guān)閉合,燈泡亮;而燈泡亮?xí)r,開關(guān)必須閉合,所以開關(guān)閉合是燈泡亮的充要條件,選項(3)正確.(4)開關(guān)閉合,燈泡不一定亮;而燈泡亮?xí)r,開關(guān)不一定閉合,所以開關(guān)閉合是燈泡亮的既不充分也不必要條件,選項(4)錯誤.故答案為(1)(2)(3).14、①.②.【解析】建立空間直角坐標(biāo)系,根據(jù),可得對應(yīng)的軌跡方程;先求的面積,其是固定值,要使體積最小,只需求點到平面的距離的最小值即可.【詳解】分別以為軸建系,設(shè),而,,,,.由,有,化簡得對應(yīng)的軌跡方程為.所以點P對應(yīng)的軌跡的面積是.易得的三個邊即是邊長為為的等邊三角形,其面積為,,設(shè)平面的一個法向量為,則有,可取平面的一個法向量為,根據(jù)點的軌跡,可設(shè),,所以點到平面的距離,所以故答案為:;15、②③【解析】對①:由連接,,由平面,即可判斷;對③:設(shè)到平面的距離為,則,所以即可判斷;對④:以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,設(shè),利用向量法求出與,比較大小即可判斷;對②:設(shè)與平面夾角為,利用向量法求出,即可求解判斷.【詳解】解:對①:連接,,在正方體中,由平面,可得,又,,所以平面,所以,故①錯誤;對③:設(shè)到平面的距離為,則,所以,故③正確;對④:以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,設(shè),則,0,,,0,,,,,,,,所以,,,,,,設(shè)平面的法向量為,,,則,即,取,,,又,1,是平面的一個法向量,又二面角為銳二面角或直角,所以,,,又,,,故④錯誤對②:由④的解析知,,,,設(shè)平面的法向量為,則,即,取,則,設(shè)與平面夾角為,令,即,又,解得或,故②正確.故答案為:②③.16、【解析】由題意可得,據(jù)此可得切線的斜率,結(jié)合切點坐標(biāo)即可確定切線方程.【詳解】由函數(shù)的解析式可得:,所求切線的斜率為:,由于切點坐標(biāo)為,故切線方程為:.【點睛】導(dǎo)數(shù)運算及切線的理解應(yīng)注意的問題一是利用公式求導(dǎo)時要特別注意除法公式中分子的符號,防止與乘法公式混淆二是直線與曲線公共點的個數(shù)不是切線的本質(zhì),直線與曲線只有一個公共點,直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個或兩個以上的公共點三是復(fù)合函數(shù)求導(dǎo)的關(guān)鍵是分清函數(shù)的結(jié)構(gòu)形式.由外向內(nèi)逐層求導(dǎo),其導(dǎo)數(shù)為兩層導(dǎo)數(shù)之積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)建立空間直角坐標(biāo)系,利用向量法求得直線與所成角的余弦值.(2)結(jié)合直線與平面所成的角,利用向量法列方程,化簡求得的長.【小問1詳解】依題意點在平面ABC上的射影為線段AC的中點D,所以平面,,由于,所以,以為空間坐標(biāo)原點建立如圖所示空間直角坐標(biāo)系,,,當(dāng)是等邊三角形時,,.設(shè)直線與所成角為,則.【小問2詳解】設(shè),則,,設(shè)平面的法向量為,則,故可設(shè),設(shè)直線與平面所成角為,則,化簡的,解得或,也即或.18、(1)(2)1【解析】(1)由題意得,化簡可得答案,(2)求出漸近線方程,設(shè)點,,,,,由可得,代入雙曲線方程化簡可得,然后表示的坐標(biāo),再進(jìn)行數(shù)量積運算,化簡后利用基本不等式可得答案【小問1詳解】由題意得,即,整理得,因為雙曲線的頂點坐標(biāo)滿足上式,所以C的方程為.【小問2詳解】由(1)可知,曲線C的漸近線方程為,設(shè)點,,,,,由,得,整理得,①,把①代入,整理得②,因為,,所以.由,得,則,當(dāng)且僅當(dāng)時等號成立,所以的最小值是1.19、(1);(2).【解析】(1)根據(jù)拋物線的定義列方程,由此求得,進(jìn)而求得拋物線方程.(2)聯(lián)立直線的方程和拋物線方程,寫出根與系數(shù)關(guān)系,結(jié)合求得的值,求得三角形面積的表達(dá)式,進(jìn)而求得面積的最小值.【詳解】(1)依題意.(2)與聯(lián)立得,,得,又,又m>0,m=4.且,,當(dāng)k=0時,S最小,最小值為.20、(1)證明過程見解析;(2).【解析】(1)利用平面與平面垂直的性質(zhì)得出直線與平面垂直,進(jìn)而得出平面;(2)建立空間直角坐標(biāo)系即可求解.【小問1詳解】證明:因為平面平面,交線為且平面中,所以平面又平面所以又,且所以平面【小問2詳解】解:由(1)知,平面且所以、、兩兩垂直因此以原點,建立如圖所示的空間直角坐標(biāo)系因為,,,設(shè)所以,,,,由(1)知,平面所以為平面的法向量且因為直線與平面所成角的正弦值為所以解得:所以,又,,所以,,,設(shè)平面與平面的法向量分別為:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年齊齊哈爾市泰來縣公益崗保潔人員招聘2人備考筆試題庫及答案解析
- 2026河北省定向北京交通大學(xué)選調(diào)生招錄備考考試題庫及答案解析
- 2025山東聊城市消防救援支隊食堂服務(wù)人員招錄6人參考筆試題庫附答案解析
- 《觀察物體》數(shù)學(xué)課件教案
- 2026廣西醫(yī)科大學(xué)附屬口腔醫(yī)院人才招聘35人備考考試試題及答案解析
- 2026清華大學(xué)面向應(yīng)屆畢業(yè)生招聘參考筆試題庫附答案解析
- 2025泰安新泰市泰山電力學(xué)校教師招聘備考筆試試題及答案解析
- 2025遼寧鞍山市立山區(qū)事業(yè)單位招聘博士研究生3人備考考試試題及答案解析
- 網(wǎng)服務(wù)合同協(xié)議書
- 耕地被占用協(xié)議書
- 2025專精特新小巨人打分表(密件)
- 國家自然科學(xué)基金申報培訓(xùn)
- MOOC 光學(xué)發(fā)展與人類文明-華南師范大學(xué) 中國大學(xué)慕課答案
- 馬工程《經(jīng)濟(jì)法學(xué)》教學(xué)
- 新概念二單詞表新版,Excel 版
- 2023年陜西西安經(jīng)濟(jì)技術(shù)開發(fā)區(qū)招聘120人(共500題含答案解析)筆試必備資料歷年高頻考點試題摘選
- 第八講 發(fā)展全過程人民民主PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 篇12pmc窗口功能指令舉例講解
- GB/T 7332-2011電子設(shè)備用固定電容器第2部分:分規(guī)范金屬化聚乙烯對苯二甲酸酯膜介質(zhì)直流固定電容器
- GB/T 38658-20203.6 kV~40.5 kV交流金屬封閉開關(guān)設(shè)備和控制設(shè)備型式試驗有效性的延伸導(dǎo)則
- 疲勞與斷裂完整
評論
0/150
提交評論