版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市長安一中2026屆高二數學第一學期期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.變量,之間有如下對應數據:3456713111087已知變量與呈線性相關關系,且回歸方程為,則的值是()A.2.3 B.2.5C.17.1 D.17.32.過點且平行于直線的直線的方程為()A. B.C. D.3.曲線在點處的切線過點,則實數()A. B.0C.1 D.24.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.5.如圖,在正方體ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直線l在正方形EFGH內,點E到直線l的距離記為d,記二面角為A-l-P為θ,已知初始狀態(tài)下x=0,d=0,則()A.當x增大時,θ先增大后減小 B.當x增大時,θ先減小后增大C.當d增大時,θ先增大后減小 D.當d增大時,θ先減小后增大6.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}7.雅言傳承文明,經典浸潤人生.某市舉辦“中華經典誦寫講大賽”,大賽分為四類:“誦讀中國”經典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.8.已知F1(-5,0),F2(5,0),動點P滿足|PF1|-|PF2|=2a,當a為3和5時,點P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線9.已知命題p:,總有,則為()A.,使得 B.,使得C.,總有 D.,總有10.已知為虛數單位,復數滿足為純虛數,則的虛部為()A. B.C. D.11.設,“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件12.已知函數在處的導數為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩點和則以為直徑的圓的標準方程是__________.14.寫出一個同時滿足下列條件①②③的圓C的標準方程:__________①圓C的圓心在第一象限;②圓C與x軸相切;③圓C與圓外切15.某工廠的某種型號的機器的使用年限和所支出的維修費用(萬元)有下表的統(tǒng)計資料:23456223.85.56.57.0根據上表可得回歸直線方程,則=_____.16.若向量,,,且向量,,共面,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是奇函數.(1)求的值;(2)若,求的值18.(12分)已知橢圓:過點,且離心率(Ⅰ)求橢圓的標準方程;(Ⅱ)設的左、右焦點分別為,,過點作直線與橢圓交于,兩點,,求的面積19.(12分)在等差數列中,已知且(1)求的通項公式;(2)設,求數列前項和20.(12分)某廠A車間為了確定合理的工時定額,需要確定加工零件所花費的時間,為此作了五次試驗,得到數據如下:加工零件的個數x12345加工的時間y(小時)1.52.43.23.94.5(1)在給定的坐標系中畫出散點圖;(2)求出y關于x的回歸方程;(3)試預測加工9個零件需要多少時間?參考公式:,21.(12分)新疆長絨棉品質優(yōu)良,纖維柔長,被世人譽為“棉中極品”,產于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價棉花質量的重要指標之一,在新疆某地區(qū)成熟的長絨棉中隨機抽測了一批棉花的纖維長度(單位:mm),將樣本數據制成頻率分布直方圖如下:(1)求的值;(2)估計該樣本數據的平均數(同一組中的數據用該組數據區(qū)間的中點值為代表);(3)根據棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區(qū)成熟的棉花中隨機抽測兩根棉花的纖維長度,用樣本的頻率估計概率,求至少有一根棉花纖維長度達到特等品的概率.22.(10分)已知函數,滿足,已知點是曲線上任意一點,曲線在處的切線為.(1)求切線的傾斜角的取值范圍;(2)若過點可作曲線的三條切線,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】將樣本中心點代入回歸方程后求解【詳解】,,將樣本中心點代入回歸方程,得故選:D2、B【解析】根據平行設直線方程,代入點計算得到答案.【詳解】設直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.3、A【解析】由導數的幾何意義得切線方程為,進而得.【詳解】解:因為,,,所以,切線方程為,因為切線過點,所以,解得故選:A4、D【解析】由題干條件得到,設出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設,則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D5、C【解析】以F為坐標原點,FB,FG,FE所在直線為x軸,y軸,z軸建立空間直角坐標系,設正方體的棱長為2,則P(2,x,0),A(2,0,2),設直線l與EF,EH交于點M、N,,求得平面AMN的法向量為,平面PMN的法向量,由空間向量的夾角公式表示出,對于A,B選項,令d=0,則,由函數的單調性可判斷;對于C,D,當x=0時,則,令,利用導函數研究函數的單調性可判斷.【詳解】解:由題意,以F為坐標原點,FB,FG,FE所在直線為x軸,y軸,z軸建立空間直角坐標系如圖所示,設正方體的棱長為2,則P(2,x,0),A(2,0,2),設直線l與EF,EH交于點M、N,則,所以,,設平面AMN的法向量為,則,即,令,則,設平面PMN的法向量為,則,即,令,則,,對于A,B選項,令d=0,則,顯示函數在是為減函數,即減小,則增大,故選項A,B錯誤;對于C,D,對于給定的,如圖,過作,垂足為,過作,垂足為,過作,垂足為,當在下方時,,設,則對于給定的,為定值,此時設二面角為,二面角為,則二面角為,且,故,而,故即,當時,為減函數,故為增函數,當時,為增函數,故為減函數,故先增后減,故D錯誤.當在上方時,,則對于給定的,為定值,則有二面角為,且,因,故為增函數,故為減函數,綜上,對于給定的,隨的增大而減少,故選:C.6、D【解析】根據集合交集的運算法則計算即可.【詳解】∵A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B={-2,-1,0}.故選:D.7、B【解析】由已知條件得基本事件總數為種,符合條件的事件數為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.8、D【解析】由雙曲線定義結合參數a的取值分類討論而得.【詳解】依題意得,當時,,且,點P的軌跡為雙曲線的右支;當時,,故點P的軌跡為一條射線.故選D.故選:D9、B【解析】由含有一個量詞的命題的否定的定義求解.【詳解】因為命題p:,總有是全稱量詞命題,所以其否定為存在量詞命題,即,使得,故選:B10、D【解析】先設,代入化簡,由純虛數定義求出,即可求解.【詳解】設,所以,因為為純虛數,所以,解得,所以的虛部為:.故選:D.11、A【解析】根據充分、必要條件的概念理解,可得結果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點睛】本題主要考查充分、必要條件的概念理解,屬基礎題.12、C【解析】利用導數的定義即可求出【詳解】故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據的中點是圓心,是半徑,即可寫出圓的標準方程.【詳解】因為和,故可得中點為,又,故所求圓的半徑為,則所求圓的標準方程是:.故答案為:.14、(答案不唯一,但圓心坐標需滿足,)【解析】首先設圓的圓心和半徑,根據條件得到關于的方程組,即可求解.【詳解】設圓心坐標為,由①可知,半徑為,由②③可知,整理可得,當時,,,所以其中一個同時滿足條件①②③的圓的標準方程是.故答案為:(答案不唯一,但圓心坐標需滿足,)15、08##【解析】根據表格中的數據求出,將點代入回歸直線求出即可.【詳解】由表格可得,,由于回歸直線過點,故,解得,故答案為:0.08.16、##【解析】由向量共面的性質列出方程組求解即可.【詳解】因為,,共面,所以存在實數x,y,使得,得,解得∴故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)4【解析】(1)根據奇函數的定義,代入化簡得,進而可得的值;(2)設,可得,根據奇函數的性質得,進而可得結果.【詳解】解:(1)因為是奇函數,所以,即,整理得,又,所以(2)設,因為,所以因為是奇函數,所以所以【點睛】本題主要考查了已知函數的奇偶性求參數的值,根據函數的奇偶性求函數的值,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)根據已知點,離心率以及列方程組,解方程組可得的值即可求解;(Ⅱ)設,,直線的方程為,聯立直線與橢圓方程消去,可得,,利用向量數量積的坐標表示列方程可得的值,計算,利用面積公式計算即可求解.【詳解】(Ⅰ)將代入橢圓方程可得,即①因為離心率,即,②由①②解得,,故橢圓的標準方程為(Ⅱ)由題意可得,,設直線的方程為將直線的方程代入中,得,設,,則,所以,,所以,由,解得,所以,,因此19、(1)(2)【解析】(1)由等差數列基本量的計算即可求解;(2)由裂項相消求和法即可求解.【小問1詳解】解:由題意,設等差數列的公差為,則,,解得,;【小問2詳解】解:,.20、(1)圖見解析;(2);(3)小時.【解析】(1)根據表格數據在坐標系中描出對應點即可.(2)由表格中的數據代入公式算出,再求,即可得到方程;(3)中將自變量為9代入回歸方程可得需用時間.【小問1詳解】【小問2詳解】由表中數據得:,,,,由x與y之間具有線性相關關系,根據公式知:,,∴回歸直線方程為:【小問3詳解】將代入回歸直線方程得,,∴預測加工9個零件需要小時21、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有矩形的面積之和為1,可求出答案.(2)根據平均數的公式可得到答案.(3)先求出一根棉花纖維長度達到特等品的概率,然后分恰好有一根和兩根棉花小問1詳解】由解得【小問2詳解】該樣本數據的平均數為:【小問3詳解】由題意一根棉花纖維長度達到特等品的概率為:兩根棉花中至少有一根棉花纖維長度達到特等品的概率22、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年互聯網產品運營初探初級產品運營師模擬試題
- 2026年金融風險管理題
- 2026年高級經濟師考試大綱及模擬題
- 未來五年智慧口岸企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年舞臺燈光設備企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年海水污染監(jiān)測服務企業(yè)數字化轉型與智慧升級戰(zhàn)略分析研究報告
- 未來五年蜆企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 七上《穿井得一人》知識點總結
- 2025年云南衛(wèi)生系統(tǒng)招聘考試(醫(yī)學影像技術)每日一練試題及答案
- 舞蹈培訓合作合同2025年加盟合作協議書
- 廣東省領航高中聯盟2024-2025學年高一下學期第一次聯合考試語文試卷(含答案)
- 社區(qū)健康服務與管理課件
- QGDW1512-2014電力電纜及通道運維規(guī)程
- 投資車行合同協議書
- 國際消防安全系統(tǒng)規(guī)則
- 靜脈治療新理念
- 高中研究性學習指導課課件系列總結階段-學生如何開展研究活動
- 心內介入治療護理
- 民辦職業(yè)培訓方案模板
- 04S519小型排水構筑物(含隔油池)圖集
- 旅居養(yǎng)老可行性方案
評論
0/150
提交評論