2026屆陜西省寶雞市某校高三上學期第一次質(zhì)量檢測數(shù)學試卷(解析版)_第1頁
2026屆陜西省寶雞市某校高三上學期第一次質(zhì)量檢測數(shù)學試卷(解析版)_第2頁
2026屆陜西省寶雞市某校高三上學期第一次質(zhì)量檢測數(shù)學試卷(解析版)_第3頁
2026屆陜西省寶雞市某校高三上學期第一次質(zhì)量檢測數(shù)學試卷(解析版)_第4頁
2026屆陜西省寶雞市某校高三上學期第一次質(zhì)量檢測數(shù)學試卷(解析版)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

高級中學名校試卷PAGEPAGE1陜西省寶雞市某校2026屆高三上學期第一次質(zhì)量檢測數(shù)學試卷一、單選題1.已知復數(shù)z滿足i?z+2=2i,則|z|=(A.2 B.22 C.4 D.【答案】B【解析】由i?z+2=2i可得,z=-2+2故選:B.2.已知一個圓錐的底面半徑為3,其側(cè)面積為15π,則該圓錐的高為(

)A.3 B.32 C.4 D.【答案】C【解析】設圓錐的底面半徑r=3,母線長為l,則πrl=15π,解得所以該圓錐的高h=l故選:C.3.已知a>0,b>0,則(

)A.a(chǎn)2+bC.a(chǎn)+b>ab D.【答案】C【解析】對于A,當a=b時,a2+b對于BD,取a=12,b=1a+1對于C,由基本不等式可得a+b≥2ab>ab,故故選:C.4.已知向量a與b的夾角為π3,且a=1,2a-A.3 B.2 C.1 D.3【答案】C【解析】∵a=1,2a-b則2a解得b=1故選:C.5.已知f(x)是定義在R上且周期為2的偶函數(shù),當2≤x≤3時,f(x)=5-2x,則f-34A.-12 B.-14 C.【答案】A【解析】由題知f(x)=f(-x),f(x+2)=f(x)對一切x∈R于是f(-3故選:A.6.在△ABC中,AE=3EC,若BE=xAB+A.-12 B.-13 C.【答案】D【解析】因為AE=3EC,可得所以BE=又因為BE=xAB+故選:D.7.若一個等比數(shù)列的各項均為正數(shù),且前4項的和等于4,前8項的和等于68,則這個數(shù)列的公比等于(

)A.-2 B.2或-2 C.2 D.4【答案】C【解析】記此等比數(shù)列為{an},設其公比為q,由a依題意,a1+a2+所以這個數(shù)列的公比等于2.故選:C.8.一定條件下,某人工智能大語言模型訓練N個單位的數(shù)據(jù)量所需要的時間T=klog2N(單位:h),其中k為常數(shù).在此條件下,已知訓練數(shù)據(jù)量N從106個單位增加到1.024×109個單位時,訓練時間增加20h;當訓練數(shù)據(jù)量N從A.2h B.4h C.20h D.40h【答案】B【解析】設當N取106個單位、1.024×109個單位、4.096×由題意,T1T2T3因為T2-T所以T3所以當訓練數(shù)據(jù)量N從1.024×109個單位增加到4.096×109故選:B.二、多選題9.設正數(shù)x,y滿足x+2y=3,則下列說法正確的是(

)A.xy的最小值為98 B.yxC.x+2y的最大值為6 D.x【答案】BCD【解析】A選項,xy=當且僅當x=2y即x=32,y=34時等號成立,故xyB選項,yx+3y=C選項,由xy≤98,得所以x+2y≤6,當且僅當D選項,由xy≤98,得當且僅當x=32,y=故選:BCD.10.已知△ABC的面積為14,若cos2A+cosA.sinC=sin2C.sinA+sinB=【答案】ABC【解析】cos2A+cos2B+2整理可得,sinC=sin2由誘導公式,sin(A+B)=展開可得sinA即sinA(下證C=π方法一:分類討論若A+B=π2,則若A+B<π2,即A<π2-B又sinA>0,sinB>0與條件不符,則A+B<π若A+B>π2,類似可推導出sinA(sin綜上討論可知,A+B=π2,即方法二:邊角轉(zhuǎn)化sinC=sin2A+sin于是1×sin由正弦定理,a2由余弦定理可知,cosC≥0,則C∈(0,若C∈(0,π2),則A+B>π2于是cosA>0,cosB>0結(jié)合A+B>π2?A>π2于是sinC=sin2故C∈(0,π2)方法三:結(jié)合射影定理(方法一改進)由sinC=sin2A+sin2B則a(sinA-cos方法四:和差化積(方法一改進)續(xù)法三:a(sinA-cosB)+b(sinB-cossinA即cos(A-B)-12sin2A+sin2B≤0,結(jié)合和差化積,cos(A-B)1-sin(A+B)≤0,由上述分析,A,B∈由cosAcosBsinC=14則sin2A=12,同理sin2B=1不妨設A<B,則2A=π6,2B=由兩角和差的正弦公式可知sinπ12+由兩角和的正切公式可得,tan5π設BC=t,AC=2+3t由S△ABC=12(2+于是AB=(6+2)t=2,B選項正確,由勾股定理可知,故選:ABC.11.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=ex(x+1)A.當x>0時,f(x)=-e-x(x-1) B.函數(shù)f(x)C.f(x)<0的解集為(-∞,-1)∪(0,1) D.?【答案】BCD【解析】對于A,函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=e則當x>0時,-x<0,故f(x)=-f(-x)=-e-x(-x+1)=對于B,函數(shù)f(x)是定義在R上的奇函數(shù),故f(0)=0;當x<0時,令f(x)=ex(x+1)=0當x>0時,令f(x)=e-x(x-1)=0故函數(shù)f(x)有3個零點,B正確;對于C,當x<0時,令f(x)=ex(x+1)<0當x>0時,令f(x)=e-x(x-1)<0,解得x<1故f(x)<0的解集為(-∞,-1)∪(0,1),對于D,當x<0時,f'x=exx+2,所以-2<x<0時,f'x>0,f(x)單調(diào)遞增,所以x=-2時,f(x)且x<-1時,fx<0,所以fx當x>0時,f'x=e-x-x+2,當當x>2時,f'x<0所以x=2時,f(x)取極大值為e-2,且x>1時,fx>0,0<x<1所以fx>f0綜合以上,f(x)的值域為-1,1,所以?x1,x2故選:BCD.三、填空題12.4個家長和2個兒童去爬山,6個人需要排成一條隊列,要求隊列的頭和尾均是家長,則不同的排列個數(shù)有種.【答案】288【解析】先選兩位家長排在首尾有P42=12故有12×24=288種排法.故答案為:288.13.已知(1-2x)4=a0【答案】15【解析】令x=0,則a0又1-2x4故1-2x4令t=-2x,則1+t4令t=1,則a0+故答案為:15.14.如圖,在正四棱柱ABCD-A1B1C【答案】112【解析】因為BD=42且四邊形ABCD為正方形,故BA=4而DB1=9,故B故所求體積為7×16=112,故答案為:112.四、解答題15.已知圓C的方程為x(1)若直線l經(jīng)過圓C的圓心,且傾斜角為3π4,求直線(2)若直線y=x+1與圓C交于A,B兩點,求弦AB的長.解:(1)由題意得圓C的標準方程為:x-32所以圓心坐標為3,2,由直線的點斜式方程可得直線方程為y-2=tan即x+y-5=0;(2)圓心3,2到直線y=x+1的距離為d=3-2+1所以弦AB的長為2216.如圖,正四棱臺ABCD-A1B1C1D1中,上底面邊長為4(1)證明:AC1//(2)求該正四棱臺的表面積.(1)證明:連接AC,交BD于點O,連接OE,如圖所示.在正四棱臺ABCD-A1B1C1D1又∵E為CC∴OE//AC又OE?平面BDE,AC1?∴AC1//(2)解:由題可知:在梯形ABB1A1中,A1過A1作A1M⊥AB交AB于點M,∴AM=2所以S梯形∴正四棱臺ABCD-A1S=S17.如圖,設矩形ABCD(AB>AD)的周長為24cm,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點P,設AB=xcm,(1)當x=8時,求a的值;(2)設△CPB'的面積為S,求S解:(1)如圖,由矩形ABCDAB>AD的周長為24cm,可知AD=4cm,DP=(8-a)∵∠APD=∠CPB',∠ADP=∠CB∴Rt∴AP=CP=acm在Rt△ADP中,由勾股定理得AD2+DP(2)如圖,由矩形ABCDAB>AD的周長為24cm,可知AD=(12-x)cm∵∠APD=∠CPB',∠ADP=∠CB∴Rt∴AP=CP=acm在Rt△ADP中,由勾股定理得AD2解得a=x所以DP=x-a=12x-72所以△CPB'的面積為S=1由基本不等式與不等式的性質(zhì),得S≤6×-2當且僅當x=72x時,即當x=62面積的最大值為108-72218.在△ABC中,角A,B,C的對邊分別為a,b,c.已知asinB=3bcos(1)求A的值;(2)求c的值;(3)求sin(A+2B)解:(1)已知asinB=3得asinB=bsin得tanA=3,由故A=π(2)由(1)知cosA=12,且c=2b+1由余弦定理a2則7=b解得b=1(b=-2舍去),故c=3;(3)由正弦定理asinA=得sinB=bsinAa故cosB=514且cos2B=1-2故sin(A+2B)=19.已知函數(shù)fx(1)若函數(shù)Fx=fx(2)若對任意實數(shù)m∈34,1,對任意x1,解:(1)函數(shù)Fx即2x+a=即2-ax當a=2時,x-2=0,解得x=2,符合題意;當a≠2時,方程為一元二次方程,其Δ=(2a-3)2當a=52時,Δ=0當a≠52時,Δ>0,方程有兩個不等的實數(shù)根x若x1=2為①的解,則22若x2=1a-2為①的解,則要使①有唯一實數(shù)解,則-1<a≤4綜上,實數(shù)a的取值范圍為-1,4(2)函數(shù)fx=ln2x+a,其中內(nèi)部函數(shù)由復合函數(shù)性質(zhì)知fx=lnfxmax=f不等式fx1-f即轉(zhuǎn)化為ln2即ln令gm=4am2-二次函數(shù)對稱軸為m=a+48a=1(i)當0<a≤47時,18+1gmmin=g(ii)當47<a<45時,34<1gmmin=g18即12-82(iii)當a≥45時,18+1gmmin=g即a≥4綜上可知,正實數(shù)a的取值范圍aa≥12-8陜西省寶雞市某校2026屆高三上學期第一次質(zhì)量檢測數(shù)學試卷一、單選題1.已知復數(shù)z滿足i?z+2=2i,則|z|=(A.2 B.22 C.4 D.【答案】B【解析】由i?z+2=2i可得,z=-2+2故選:B.2.已知一個圓錐的底面半徑為3,其側(cè)面積為15π,則該圓錐的高為(

)A.3 B.32 C.4 D.【答案】C【解析】設圓錐的底面半徑r=3,母線長為l,則πrl=15π,解得所以該圓錐的高h=l故選:C.3.已知a>0,b>0,則(

)A.a(chǎn)2+bC.a(chǎn)+b>ab D.【答案】C【解析】對于A,當a=b時,a2+b對于BD,取a=12,b=1a+1對于C,由基本不等式可得a+b≥2ab>ab,故故選:C.4.已知向量a與b的夾角為π3,且a=1,2a-A.3 B.2 C.1 D.3【答案】C【解析】∵a=1,2a-b則2a解得b=1故選:C.5.已知f(x)是定義在R上且周期為2的偶函數(shù),當2≤x≤3時,f(x)=5-2x,則f-34A.-12 B.-14 C.【答案】A【解析】由題知f(x)=f(-x),f(x+2)=f(x)對一切x∈R于是f(-3故選:A.6.在△ABC中,AE=3EC,若BE=xAB+A.-12 B.-13 C.【答案】D【解析】因為AE=3EC,可得所以BE=又因為BE=xAB+故選:D.7.若一個等比數(shù)列的各項均為正數(shù),且前4項的和等于4,前8項的和等于68,則這個數(shù)列的公比等于(

)A.-2 B.2或-2 C.2 D.4【答案】C【解析】記此等比數(shù)列為{an},設其公比為q,由a依題意,a1+a2+所以這個數(shù)列的公比等于2.故選:C.8.一定條件下,某人工智能大語言模型訓練N個單位的數(shù)據(jù)量所需要的時間T=klog2N(單位:h),其中k為常數(shù).在此條件下,已知訓練數(shù)據(jù)量N從106個單位增加到1.024×109個單位時,訓練時間增加20h;當訓練數(shù)據(jù)量N從A.2h B.4h C.20h D.40h【答案】B【解析】設當N取106個單位、1.024×109個單位、4.096×由題意,T1T2T3因為T2-T所以T3所以當訓練數(shù)據(jù)量N從1.024×109個單位增加到4.096×109故選:B.二、多選題9.設正數(shù)x,y滿足x+2y=3,則下列說法正確的是(

)A.xy的最小值為98 B.yxC.x+2y的最大值為6 D.x【答案】BCD【解析】A選項,xy=當且僅當x=2y即x=32,y=34時等號成立,故xyB選項,yx+3y=C選項,由xy≤98,得所以x+2y≤6,當且僅當D選項,由xy≤98,得當且僅當x=32,y=故選:BCD.10.已知△ABC的面積為14,若cos2A+cosA.sinC=sin2C.sinA+sinB=【答案】ABC【解析】cos2A+cos2B+2整理可得,sinC=sin2由誘導公式,sin(A+B)=展開可得sinA即sinA(下證C=π方法一:分類討論若A+B=π2,則若A+B<π2,即A<π2-B又sinA>0,sinB>0與條件不符,則A+B<π若A+B>π2,類似可推導出sinA(sin綜上討論可知,A+B=π2,即方法二:邊角轉(zhuǎn)化sinC=sin2A+sin于是1×sin由正弦定理,a2由余弦定理可知,cosC≥0,則C∈(0,若C∈(0,π2),則A+B>π2于是cosA>0,cosB>0結(jié)合A+B>π2?A>π2于是sinC=sin2故C∈(0,π2)方法三:結(jié)合射影定理(方法一改進)由sinC=sin2A+sin2B則a(sinA-cos方法四:和差化積(方法一改進)續(xù)法三:a(sinA-cosB)+b(sinB-cossinA即cos(A-B)-12sin2A+sin2B≤0,結(jié)合和差化積,cos(A-B)1-sin(A+B)≤0,由上述分析,A,B∈由cosAcosBsinC=14則sin2A=12,同理sin2B=1不妨設A<B,則2A=π6,2B=由兩角和差的正弦公式可知sinπ12+由兩角和的正切公式可得,tan5π設BC=t,AC=2+3t由S△ABC=12(2+于是AB=(6+2)t=2,B選項正確,由勾股定理可知,故選:ABC.11.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=ex(x+1)A.當x>0時,f(x)=-e-x(x-1) B.函數(shù)f(x)C.f(x)<0的解集為(-∞,-1)∪(0,1) D.?【答案】BCD【解析】對于A,函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=e則當x>0時,-x<0,故f(x)=-f(-x)=-e-x(-x+1)=對于B,函數(shù)f(x)是定義在R上的奇函數(shù),故f(0)=0;當x<0時,令f(x)=ex(x+1)=0當x>0時,令f(x)=e-x(x-1)=0故函數(shù)f(x)有3個零點,B正確;對于C,當x<0時,令f(x)=ex(x+1)<0當x>0時,令f(x)=e-x(x-1)<0,解得x<1故f(x)<0的解集為(-∞,-1)∪(0,1),對于D,當x<0時,f'x=exx+2,所以-2<x<0時,f'x>0,f(x)單調(diào)遞增,所以x=-2時,f(x)且x<-1時,fx<0,所以fx當x>0時,f'x=e-x-x+2,當當x>2時,f'x<0所以x=2時,f(x)取極大值為e-2,且x>1時,fx>0,0<x<1所以fx>f0綜合以上,f(x)的值域為-1,1,所以?x1,x2故選:BCD.三、填空題12.4個家長和2個兒童去爬山,6個人需要排成一條隊列,要求隊列的頭和尾均是家長,則不同的排列個數(shù)有種.【答案】288【解析】先選兩位家長排在首尾有P42=12故有12×24=288種排法.故答案為:288.13.已知(1-2x)4=a0【答案】15【解析】令x=0,則a0又1-2x4故1-2x4令t=-2x,則1+t4令t=1,則a0+故答案為:15.14.如圖,在正四棱柱ABCD-A1B1C【答案】112【解析】因為BD=42且四邊形ABCD為正方形,故BA=4而DB1=9,故B故所求體積為7×16=112,故答案為:112.四、解答題15.已知圓C的方程為x(1)若直線l經(jīng)過圓C的圓心,且傾斜角為3π4,求直線(2)若直線y=x+1與圓C交于A,B兩點,求弦AB的長.解:(1)由題意得圓C的標準方程為:x-32所以圓心坐標為3,2,由直線的點斜式方程可得直線方程為y-2=tan即x+y-5=0;(2)圓心3,2到直線y=x+1的距離為d=3-2+1所以弦AB的長為2216.如圖,正四棱臺ABCD-A1B1C1D1中,上底面邊長為4(1)證明:AC1//(2)求該正四棱臺的表面積.(1)證明:連接AC,交BD于點O,連接OE,如圖所示.在正四棱臺ABCD-A1B1C1D1又∵E為CC∴OE//AC又OE?平面BDE,AC1?∴AC1//(2)解:由題可知:在梯形ABB1A1中,A1過A1作A1M⊥AB交AB于點M,∴AM=2所以S梯形∴正四棱臺ABCD-A1S=S17.如圖,設矩形ABCD(AB>AD)的周長為24cm,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點P,設AB=xcm,(1)當x=8時,求a的值;(2)設△CPB'的面積為S,求S解:(1)如圖,由矩形ABCDAB>AD的周長為24cm,可知AD=4cm,DP=(8-a)∵∠APD=∠CPB',∠ADP=∠CB∴Rt∴AP=CP=acm在Rt△ADP中,由勾股定理得AD2+DP(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論