2025-2026學年江西省宜春市豐城九中、高安二中、宜春一中、萬載中學、樟樹中學、宜豐中學數學高二上期末經典模擬試題含解析_第1頁
2025-2026學年江西省宜春市豐城九中、高安二中、宜春一中、萬載中學、樟樹中學、宜豐中學數學高二上期末經典模擬試題含解析_第2頁
2025-2026學年江西省宜春市豐城九中、高安二中、宜春一中、萬載中學、樟樹中學、宜豐中學數學高二上期末經典模擬試題含解析_第3頁
2025-2026學年江西省宜春市豐城九中、高安二中、宜春一中、萬載中學、樟樹中學、宜豐中學數學高二上期末經典模擬試題含解析_第4頁
2025-2026學年江西省宜春市豐城九中、高安二中、宜春一中、萬載中學、樟樹中學、宜豐中學數學高二上期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025-2026學年江西省宜春市豐城九中、高安二中、宜春一中、萬載中學、樟樹中學、宜豐中學數學高二上期末經典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數的導函數為,且恒有,則下列不等式一定成立的是()A. B.C. D.2.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.3.直線的傾斜角是()A. B.C. D.4.直線經過兩點,那么其斜率為()A. B.C. D.5.函數在(0,e]上的最大值為()A.-1 B.1C.0 D.e6.拋物線的焦點到準線的距離為()A. B.C. D.7.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.8.從某個角度觀察籃球(如圖1),可以得到一個對稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標軸和雙曲線,若坐標軸和雙曲線與圓O的交點將圓O的周長八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,則輸出的結果為()A. B.C. D.10.已知三個觀測點,在的正北方向,相距,在的正東方向,相距.在某次爆炸點定位測試中,兩個觀測點同時聽到爆炸聲,觀測點晚聽到,已知聲速為,則爆炸點與觀測點的距離是()A. B.C. D.11.曲線的一個焦點F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標原點,若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.12.已知實數,滿足約束條件則的最大值為()A.10 B.8C.4 D.20二、填空題:本題共4小題,每小題5分,共20分。13.我國南北朝時期的數學家祖暅提出了一個原理“冪勢既同,則積不容異”,即夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側面展開圖是一個半徑為2的半圓,則該幾何體的體積為________.14.寫出一個漸近線的傾斜角為且焦點在y軸上的雙曲線標準方程___________.15.已知向量與是平面的兩個法向量,則__________16.在2021件產品中有10件次品,任意抽取3件,則抽到次品個數的數學期望的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的左右焦點分別為,,點P是橢圓C上位于第二象限的任一點,直線l是的外角平分線,過左焦點作l的垂線,垂足為N,延長交直線于點M,(其中O為坐標原點),橢圓C的離心率為(1)求橢圓C的標準方程;(2)過右焦點的直線交橢圓C于A,B兩點,點T在線段AB上,且,點B關于原點的對稱點為R,求面積的取值范圍.18.(12分)已知數列和中,,且,.(1)寫出,,,,猜想數列和的通項公式并證明;(2)若對于任意都有,求的取值范圍.19.(12分)已知橢圓C:的長軸長為,P是橢圓上異于頂點的一個動點,O為坐標原點,A為橢圓C的上頂點,Q為PA的中點,且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過上焦點F的直線l與橢圓C相交于M,N兩點,當點M,N到y(tǒng)軸距離之和最大時,求直線l的方程.20.(12分)已知數列的前n項和,(1)求數列的通項公式;(2)設,,求數列的前n項和21.(12分)如圖,直四棱柱的底面是菱形,,,直線與平面ABCD所成角的正弦值為.E,F(xiàn)分別為、的中點.(1)求證:平面BED;(2)求直線與平面FAC所成角的正弦值.22.(10分)已知橢圓的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.(1)求橢圓的標準方程;(2)已知直線與橢圓交于、兩點,、是橢圓上位于直線兩側的動點,且直線的斜率為,求四邊形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】構造函數,用導數判斷函數單調性,即可求解.【詳解】根據題意,令,其中,則,∵,∴,∴在上為單調遞減函數,∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.2、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D3、A【解析】將直線方程化為斜截式,由此確定斜率;根據斜率和傾斜角關系可得結果.【詳解】設直線的傾斜角為,則,由得:,則斜率,.故選:A.4、B【解析】由兩點的斜率公式可得答案.【詳解】直線經過兩點,則故選:B5、A【解析】對函數求導,然后求出函數的單調區(qū)間,從而可求出函數的最大值【詳解】由,得,當時,,當,,所以在上單調遞增,在上單調遞減,所以當時,取得最大值,故選:A6、B【解析】根據拋物線的幾何性質可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.7、B【解析】根據雙曲線的離心率,求出即可得到結論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B8、D【解析】設出雙曲線方程,通過做標準品和雙曲線與圓O的交點將圓的周長八等分,且AB=BC=CD,推出點在雙曲線上,然后求出離心率即可.【詳解】設雙曲線的方程為,則,因為AB=BC=CD,所以,所以,因為坐標軸和雙曲線與圓O的交點將圓O的周長八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D9、B【解析】寫出每次循環(huán)的結果,即可得到答案.【詳解】當時,,,,;,此時,退出循環(huán),輸出的的為.故選:B【點睛】本題考查程序框圖的應用,此類題要注意何時循環(huán)結束,建議數據不大時采用寫出來的辦法,是一道容易題.10、D【解析】根據題意作出示意圖,然后結合余弦定理解三角形即可求出結果.【詳解】設爆炸點為,由于兩個觀測點同時聽到爆炸聲,則點位于的垂直平分線上,又在的正東方向且觀測點晚聽到,則點位于的左側,,,,設,則,解得,則爆炸點與觀測點的距離為,故選:D.11、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A12、A【解析】根據約束條件作出可行域,再將目標函數表示的一簇直線畫出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉化為,令則,作出直線并平移使它經過可行域點,經過時,,解得,所以此時取得最大值,即有最大值,即故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據圓錐的側面展開圖是一個半徑為2的半圓,由,求得底面半徑,進而得到高,再利用錐體的體積公式求解.【詳解】設圓錐的母線長為l,高為h,底面半徑為r,因為圓錐的側面展開圖是一個半徑為2的半圓,所以,解得,所以,所以圓錐的體積為:,故該幾何體的體積為,故答案為:14、(答案不唯一)【解析】根據已知條件寫出一個符合條件的方程即可.【詳解】如,焦點在y軸上,令,得漸近線方程為,其中的傾斜角為.故答案為:(答案不唯一).15、【解析】由且為非零向量可直接構造方程求得,進而得到結果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.16、【解析】設抽到的次品的個數為,則,求出對應的概率即得解.【詳解】解:設抽到的次品的個數為,則,所以所以抽到次品個數的數學期望的值是故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據題意可得到的值,結合橢圓的離心率,即可求得b,求得答案;(2)由可得,進一步推得,于是設直線方程和橢圓方程聯(lián)立,利用根與系數的關系,求得弦長,表示出三角形AOB的面積,利用換元法結合二次函數的性質求其范圍.【小問1詳解】由題意可知:為的中點,為的中點,為的中位線,,,又,故,即,,又,,,橢圓的標準方程為;【小問2詳解】由題意可知,,,①當過的直線與軸垂直時,,,②當過的直線不與軸垂直時,可設,,直線方程為,聯(lián)立,可得:.,,,由弦長公式可知,到距離為,故,令,則原式變?yōu)椋?,原式變?yōu)楫敃r,故,由①②可知.【點睛】本題考查了橢圓方程的求解,以及直線和橢圓相交時的三角形的面積問題,考查學生的計算能力和數學素養(yǎng),解答的關鍵是計算三角形面積時要理清運算的思路,準確計算.18、(1),,,證明見解析(2)【解析】(1)已知兩式相加化簡可得是首項為2,公比為2的等比數列,則,兩式相減化簡可得是首項為2,公差為2的等差數列,則,(2)由題意可得只需要,令,由和解不等式可求出的最小值,從而可求得的取值范圍【小問1詳解】由已知得,猜想,,由題得,所以易知,即所以是首項為2,公比為2的等比數列,故,由題得,所以,即,所以是首項為2,公差為2的等差數列,所以.【小問2詳解】因為任意都有,即,只需要,記,易知,故,當時,,解得或,當時,,解得,因為,所以,所以,所以的取值范圍是.19、(1)(2)【解析】(1)設點,求出直線、直線的斜率相乘可得,結合可得答案;(2)設直線l的方程為與橢圓方程聯(lián)立,代入得,設,再利用基本不等式可得答案.【小問1詳解】由題意可得,,即,則,設點,∵Q為的中點,∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問2詳解】由(1)知,設直線l的方程為,聯(lián)立化簡得,,設,則,易知M,N到y(tǒng)軸的距離之和為,,設,∴,當且僅當即時等號成立,所以當時取得最大值,此時直線l的方程為.20、(1);(2)【解析】(1)將代入可求得.根據通項公式與前項和的關系,可得數列為等比數列,由等比數列的通項公式即可求得數列的通項公式.(2)由(1)可得數列的通項公式,代入中,結合裂項法求和即可得前n項和.【詳解】(1)當時,由得;當時,由得是首項為3,公比為3的等比數列當,滿足此式所以(2)由(1)可知,【點睛】本題考查了通項公式與前項和的關系,裂項法求和的應用,屬于基礎題.21、(1)證明見解析(2)【解析】(1)證明垂直于平面BED內的兩條相交直線,即可得到答案;(2)分別以OB,OC,OE為x軸,y軸,z軸,建立直角坐標系,平面FAC的一個法向量為,代入向量的夾角公式,即可得到答案;【小問1詳解】∵ABCD為菱形,∴,設AC與BD的交點為O,則OE為的中位線,∴.由題意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小問2詳解】∵ABCD為菱形,,∴為正三角形,∴.∵平面ABCD,∴與平面ABCD所成角,由,得,所以.如圖,分別以OB,OC,OE為x軸,y軸,z軸,建立直角坐標系,則,,,,,,,設平面FAC的法向量為,則由可得,取,故可得平面FAC的一個法向量為,記直線與平面FAC的夾角為,則22、(1)(2)【解析】(1)根據離心率的定義以及橢圓與拋物線焦點的關系,可以求出橢圓方程;(2)根據題意,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論