版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年廣西柳州市柳江中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.內(nèi)角A,B,C的對(duì)邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形2.如圖,橢圓的右焦點(diǎn)為,過與軸垂直的直線交橢圓于第一象限的點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,且,,則橢圓方程為()A. B.C. D.3.已知數(shù)列的通項(xiàng)公式為,是數(shù)列的最小項(xiàng),則實(shí)數(shù)的取值范圍是()A. B.C. D.4.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為()A. B.C. D.5.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.6.甲、乙、丙、丁四人站成一列,要求甲站在最前面,則不同的排法有()A.24種 B.6種C.4種 D.12種7.如圖,在直三棱柱中,且,點(diǎn)E為中點(diǎn).若平面過點(diǎn)E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)8.在等差數(shù)列中,,,則使數(shù)列的前n項(xiàng)和成立的最大正整數(shù)n=()A.2021 B.2022C.4041 D.40429.若過點(diǎn)(2,1)的圓與兩坐標(biāo)軸都相切,則圓心到直線的距離為()A. B.C. D.10.已知m,n表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則11.已知數(shù)列滿足:且,則此數(shù)列的前20項(xiàng)的和為()A.621 B.622C.1133 D.113412.已知函數(shù),則函數(shù)在點(diǎn)處的切線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點(diǎn)且與直線平行的直線的方程是______.14.過點(diǎn)作斜率為的直線與橢圓相交于、兩個(gè)不同點(diǎn),若是的中點(diǎn),則該橢圓的離心率___________.15.過拋物線的焦點(diǎn)作傾斜角為的直線,與拋物線分別交于兩點(diǎn)(點(diǎn)在軸上方),_________16.已知雙曲線的右焦點(diǎn)為F,以F為圓心,以a為半徑的圓與雙曲線C的一條漸近線交于A,B兩點(diǎn).若(O為坐標(biāo)原點(diǎn)),則雙曲線C的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列{an}的前n項(xiàng)和記為Sn,且.(1)求數(shù)列{an}的通項(xiàng)公式an(2)記數(shù)列的前n項(xiàng)和為Tn,若,求n的最小值.18.(12分)某企業(yè)2021年年初有資金5千萬(wàn)元,由于引進(jìn)了先進(jìn)生產(chǎn)設(shè)備,資金年平均增長(zhǎng)率可達(dá)到.每年年底扣除下一年的消費(fèi)基金1.5千萬(wàn)元后,剩余資金投入再生產(chǎn).設(shè)從2021年的年底起,每年年底企業(yè)扣除消費(fèi)基金后的剩余資金依次為,,,…(1)寫出,,,并證明數(shù)列是等比數(shù)列;(2)至少到哪一年的年底,企業(yè)的剩余資金會(huì)超過21千萬(wàn)元?(lg19.(12分)已知點(diǎn)在橢圓:上,橢圓E的離心率為.(1)求橢圓E的方程;(2)若不平行于坐標(biāo)軸且不過原點(diǎn)O的直線l與橢圓E交于B,C兩點(diǎn),判斷是否可能為等邊三角形,并說明理由.20.(12分)已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)(1)求a的取值范圍;(2)設(shè)的兩個(gè)極值點(diǎn)分別為,證明:21.(12分)已知等差數(shù)列中,首項(xiàng),公差,且數(shù)列的前項(xiàng)和為(1)求和;(2)設(shè),求數(shù)列的前項(xiàng)和22.(10分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C2、C【解析】連結(jié),設(shè),則,,由可求出,進(jìn)而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點(diǎn)為,連結(jié),由橢圓的對(duì)稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡(jiǎn)單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時(shí),關(guān)鍵是求解基本量,,.3、D【解析】利用最值的含義轉(zhuǎn)化為不等式恒成立問題解決即可【詳解】解:由題意可得,整理得,當(dāng)時(shí),不等式化簡(jiǎn)為恒成立,所以,當(dāng)時(shí),不等式化簡(jiǎn)為恒成立,所以,綜上,,所以實(shí)數(shù)的取值范圍是,故選:D4、C【解析】根據(jù)點(diǎn)關(guān)于原點(diǎn)對(duì)稱的性質(zhì)即可知答案.【詳解】由點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則對(duì)稱點(diǎn)坐標(biāo)為該點(diǎn)對(duì)應(yīng)坐標(biāo)的相反數(shù),所以.故選:C5、B【解析】求出已知雙曲線的漸近線方程,逐一驗(yàn)證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B6、B【解析】由已知可得只需對(duì)剩下3人全排即可【詳解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,則只需對(duì)剩下3人全排即可,則不同的排法共有,故選:B7、B【解析】構(gòu)造出長(zhǎng)方體,取中點(diǎn)連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長(zhǎng)方體,取中點(diǎn),連接則所有過點(diǎn)與成角的平面,均與以為軸的圓錐相切,過點(diǎn)繞且與成角,當(dāng)與水平面垂直且在面的左側(cè)(在長(zhǎng)方體的外面)時(shí),與面所成角為75°(與面成45°,與成30°),過點(diǎn)繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個(gè)邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30
,綜上,這樣的平面α有2個(gè),故選:B.8、C【解析】根據(jù)等差數(shù)列的性質(zhì)易得,,再應(yīng)用等差數(shù)列前n項(xiàng)和公式及等差中項(xiàng)、下標(biāo)和的性質(zhì)可得、,即可確定答案.【詳解】因?yàn)槭堑炔顢?shù)列且,,所以,,.故選:C.9、B【解析】由題意可知圓心在第一象限,設(shè)圓心的坐標(biāo)為,可得圓的半徑為,寫出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)在圓上,求得實(shí)數(shù)的值,利用點(diǎn)到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點(diǎn)在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標(biāo)為,則圓的半徑為,圓的標(biāo)準(zhǔn)方程為.由題意可得,可得,解得或,所以圓心的坐標(biāo)為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點(diǎn)睛】本題考查圓心到直線距離的計(jì)算,求出圓的方程是解題的關(guān)鍵,考查計(jì)算能力,屬于中等題.10、D【解析】根據(jù)空間直線與平面間的位置關(guān)系判斷【詳解】若,,也可以有,A錯(cuò);若,,也可以有,B錯(cuò);若,,則或,C錯(cuò);若,,則,這是線面垂直的判定定理之一,D正確故選:D11、C【解析】這個(gè)數(shù)列的奇數(shù)項(xiàng)是公差為2的等差數(shù)列,偶數(shù)項(xiàng)是公比為2的等比數(shù)列,只要分開來計(jì)算即可.【詳解】由于,所以當(dāng)n為奇數(shù)時(shí),是等差數(shù)列,即:共10項(xiàng),和為;,共10項(xiàng),其和為;∴該數(shù)列前20項(xiàng)的和;故選:C.12、C【解析】依據(jù)導(dǎo)數(shù)幾何意義去求函數(shù)在點(diǎn)處的切線方程即可解決.【詳解】則,又則函數(shù)在點(diǎn)處的切線方程為,即故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出直線的方程,代入點(diǎn)的坐標(biāo),求出直線的方程.【詳解】設(shè)過點(diǎn)且與直線平行的直線的方程為,將代入,則,解得:,所以直線的方程為.故答案為:14、【解析】利用點(diǎn)差法可求得的值,利用離心率公式的值.【詳解】設(shè)點(diǎn)、,則,由已知可得,由題意可得,將兩個(gè)等式相減得,所以,,因此,.故答案為:.15、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.16、【解析】過F作,利用點(diǎn)到直線距離可求出,再根據(jù)勾股定理可得,,由可得,即可建立關(guān)系求解.【詳解】如圖,過F作,則E是AB中點(diǎn),設(shè)漸近線為,則,則在直角三角形OEF中,,在直角三角形BEF中,,,則,即,即,則,即,.故答案為:.【點(diǎn)睛】本題考查雙曲線離心率的求解,解題的關(guān)鍵是分別表示出,,由建立關(guān)系.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=2n(2)100【解析】(1)由等差數(shù)列的通項(xiàng)公式列出方程組求解即可;(2)由裂項(xiàng)相消求和法得出,再由不等式的性質(zhì)得出n的最小值.【小問1詳解】設(shè)等差數(shù)列{an}的公差為d,依題意有解得,所以an=2n.【小問2詳解】由(1)得,則,所以因?yàn)?,即,解得n>99,所以n的最小值為100.18、(1),,,證明見解析(2)至少到2026年的年底,企業(yè)的剩余資金會(huì)超過21千萬(wàn)元【解析】(1)由題意可知,,,,再結(jié)合等比數(shù)列的性質(zhì),即可求解(2)由(1)知,,則,令,再結(jié)合對(duì)數(shù)函數(shù)運(yùn)算,即可求解【小問1詳解】依題意知,,,,,所以,又,所以是首項(xiàng)為3,公比為1.5的等比數(shù)列.【小問2詳解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企業(yè)的剩余資金會(huì)超過21千萬(wàn)元19、(1)(2)三角形不可能是等邊三角形,理由見解析【解析】(1)根據(jù)點(diǎn)坐標(biāo)和離心率可得橢圓方程;(2)假設(shè)為等邊三角形,設(shè),與橢圓方程聯(lián)立,由韋達(dá)定理得的中點(diǎn)的坐標(biāo),,利用得出矛盾.小問1詳解】由點(diǎn)在橢圓上,得,即,又,即,解得,所以橢圓的方程為.【小問2詳解】假設(shè)為等邊三角形,設(shè),,聯(lián)立,消去得,由韋達(dá)定理得,由得,故,所以的中點(diǎn)為,所以,故,與等邊三角形中矛盾,所以假設(shè)不成立,故三角形不可能是等邊三角形.20、(1);(2)證明見解析.【解析】(1)對(duì)函數(shù)求導(dǎo),把問題轉(zhuǎn)化為導(dǎo)函數(shù)值為0的方程有兩個(gè)正根,再構(gòu)造函數(shù)求解作答.(2)將所證不等式等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),利用導(dǎo)數(shù)探討其單調(diào)性作答.【小問1詳解】函數(shù)的定義域?yàn)?,求?dǎo)得:,依題意,函數(shù)在上有兩個(gè)不同極值點(diǎn),于是得有兩個(gè)不等的正根,令,,則,當(dāng)時(shí),,當(dāng)時(shí),,于是得在上單調(diào)遞增,在上單調(diào)遞減,,因,恒成立,即當(dāng)時(shí),的值從遞減到0(不能取0),又,有兩個(gè)不等的正根等價(jià)于直線與函數(shù)的圖象有兩個(gè)不同的公共點(diǎn),如圖,因此有,所以a取值范圍是.【小問2詳解】由(1)知分別是方程的兩個(gè)不等的正根,,即,作差得,則有,原不等式,令,則,于是得,設(shè),則,因此,在單調(diào)遞增,則有,即成立,所以.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:涉及不等式恒成立問題,將給定不等式等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.21、(1),;(2).【解析】(1)根據(jù)題意,結(jié)合等差數(shù)列的通項(xiàng)公式與求和公式,即可求解;(2)根據(jù)題意,求出,結(jié)合等差數(shù)列求和公式,即可求解.【小問1詳解】根據(jù)題意,易知;.【小問2詳解】根據(jù)題意,易知,因?yàn)?,所以?shù)列是首項(xiàng)為2,公差為的等差數(shù)列,故22、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣州市正骨醫(yī)院合同制人員招聘?jìng)淇碱}庫(kù)及完整答案詳解1套
- 后勤上半年工作總結(jié)15篇
- 2025年博思睿招聘(派遣至海寧市硤石街道辦事處)備考題庫(kù)及完整答案詳解1套
- 2026年網(wǎng)絡(luò)平臺(tái)責(zé)任保險(xiǎn)合同中
- 2026年航空貨運(yùn)包機(jī)服務(wù)合同
- 2025年綿竹市衛(wèi)生健康局綿竹市人力資源和社會(huì)保障局關(guān)于大學(xué)生鄉(xiāng)村醫(yī)生專項(xiàng)招聘的備考題庫(kù)附答案詳解
- 鄭州市規(guī)劃勘測(cè)設(shè)計(jì)研究院有限公司2026年崗位招聘?jìng)淇碱}庫(kù)及1套完整答案詳解
- 2025年民生銀行沈陽(yáng)分行社會(huì)招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 2026年物業(yè)管理軟件數(shù)據(jù)遷移合同
- 2025年威海市檢察機(jī)關(guān)公開招聘聘用制書記員31人備考題庫(kù)完整答案詳解
- 心臟手術(shù)體外循環(huán)的無菌管理策略
- 2025年洗衣房年終工作總結(jié)樣本(四篇)
- 糖尿病合并腎病綜合治療方案
- 消除母嬰三病傳播知識(shí)培訓(xùn)
- 智慧水務(wù)系統(tǒng)建設(shè)方案與應(yīng)用案例
- GB/T 39368.1-2025皮革耐折牢度的測(cè)定第1部分:撓度儀法
- 尾礦砂購(gòu)銷合同范本
- DB15∕T 3434-2024 沙質(zhì)草甸草原風(fēng)蝕區(qū)植被修復(fù)技術(shù)規(guī)程
- 2025共享辦公空間服務(wù)平臺(tái)深度剖析競(jìng)爭(zhēng)態(tài)勢(shì)評(píng)估未來前景行業(yè)分析報(bào)告
- 原輔料驗(yàn)收標(biāo)準(zhǔn)與記錄模板
- 高中生審美教育
評(píng)論
0/150
提交評(píng)論