2025年安徽省合肥市一中、六中、八中數(shù)學(xué)高二第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2025年安徽省合肥市一中、六中、八中數(shù)學(xué)高二第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2025年安徽省合肥市一中、六中、八中數(shù)學(xué)高二第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2025年安徽省合肥市一中、六中、八中數(shù)學(xué)高二第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2025年安徽省合肥市一中、六中、八中數(shù)學(xué)高二第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025年安徽省合肥市一中、六中、八中數(shù)學(xué)高二第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸入t的取值范圍為,則輸出s的取值范圍為()A. B.C. D.2.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.64003.已知圓,直線,則直線l被圓C所截得的弦長的最小值為()A.2 B.3C.4 D.54.(2017新課標(biāo)全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.5.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點(diǎn)A與點(diǎn)C,點(diǎn)B與點(diǎn)D均關(guān)于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm6.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項(xiàng),則的值為()A. B.C. D.7.直線過橢圓內(nèi)一點(diǎn),若點(diǎn)為弦的中點(diǎn),設(shè)為直線的斜率,為直線的斜率,則的值為()A. B.C. D.8.已知,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.9.已知,是圓上的兩點(diǎn),是直線上一點(diǎn),若存在點(diǎn),,,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.10.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.211.在公比為為q等比數(shù)列中,是數(shù)列的前n項(xiàng)和,若,則下列說法正確的是()A. B.數(shù)列是等比數(shù)列C. D.12.設(shè)滿足則的最大值為A. B.2C.4 D.16二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列則是這個數(shù)列的第________項(xiàng).14.已知函數(shù),,當(dāng)時,不等式恒成立,則實(shí)數(shù)a的取值范圍為_______15.設(shè)等差數(shù)列,前項(xiàng)和分別為,,若對任意自然數(shù)都有,則的值為______.16.已知方程的兩根為和5,則不等式的解集是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)要設(shè)計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計才能使得總成本最低?18.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值19.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,求函數(shù)的值域.20.(12分)已知直線,圓.(1)若l與圓C相切,求切點(diǎn)坐標(biāo);(2)若l與圓C交于A,B,且,求的面積.21.(12分)已知橢圓的離心率為,且點(diǎn)在C上.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè),為橢圓C的左,右焦點(diǎn),過右焦點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),若內(nèi)切圓的半徑為,求直線l的方程.22.(10分)在對某老舊小區(qū)污水分流改造時,需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價為400元/平方米,中間兩道隔墻的建造單價為248元/平方米,池底的建造單價為80元/平方米,池蓋的建造單價為100元/平方米,建造此污水處理池相關(guān)人員的勞務(wù)費(fèi)以及其他費(fèi)用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計算時忽略不計)(1)現(xiàn)有財政撥款9萬元,如果將污水處理池的寬建成9米,那么9萬元的撥款是否夠用?(2)能否通過合理的設(shè)計污水處理池的長和寬,使總費(fèi)用最低?最低費(fèi)用為多少萬元?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由程序圖可得,,再分段求解函數(shù)的值域,即可求解【詳解】由程序圖可得,當(dāng)時,,,當(dāng)時,,,綜上所述,的取值范圍為,故選:A2、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當(dāng)另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當(dāng)另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項(xiàng).3、C【解析】直線l過定點(diǎn)D(1,1),當(dāng)時,弦長最短.【詳解】由,圓心,半徑,,由,故直線l過定點(diǎn),∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時,直線l被圓截得的弦長最短,,弦長=.故選:C.4、B【解析】繪制圓柱的軸截面如圖所示,由題意可得:,結(jié)合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.5、B【解析】由離心率求出雙曲線方程,由對稱性設(shè)出點(diǎn)A,B,D坐標(biāo),求出坐標(biāo),求出答案.【詳解】由題意得:,解得:,因?yàn)殡x心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B6、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項(xiàng)公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.7、A【解析】設(shè)點(diǎn)與的坐標(biāo),進(jìn)而可表示與,再結(jié)合兩點(diǎn)在橢圓上,可得的值.【詳解】設(shè)點(diǎn)與,則,,所以,,又點(diǎn)與在橢圓上,所以,,作差可得,即,所以,故選:A.8、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因?yàn)榈妊切危?,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.9、B【解析】確定在以為直徑的圓上,,根據(jù)均值不等式得到圓上的點(diǎn)到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設(shè)中點(diǎn)為,則,圓上的點(diǎn)到的最大距離為,,當(dāng)時等號成立.直線到原點(diǎn)的距離為,故.故選:B.10、D【解析】由雙曲線的離心率為3和,求得,化簡,結(jié)合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當(dāng)且僅當(dāng),即時,“”成立.故選:D【點(diǎn)睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點(diǎn):一是各項(xiàng)為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導(dǎo)致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.11、D【解析】根據(jù)等比數(shù)列的通項(xiàng)公式、前項(xiàng)和公式的基本量運(yùn)算,即可得到答案;【詳解】,,故A錯誤;,,顯然數(shù)列不是等比數(shù)列,故B錯誤;,故C錯誤;,,故D成立;故選:D12、C【解析】可行域如圖,則直線過點(diǎn)A(0,1)取最大值2,則的最大值為4,選C.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大或最小值會在可行域的端點(diǎn)或邊界上取得.二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】根據(jù)被開方數(shù)的特點(diǎn)求出數(shù)列的通項(xiàng)公式,最后利用通項(xiàng)公式進(jìn)行求解即可.【詳解】數(shù)列中每一項(xiàng)被開方數(shù)分別為:6,10,14,18,22,…,因此這些被開方數(shù)是以6為首項(xiàng),4為公差的等差數(shù)列,設(shè)該等差數(shù)列為,其通項(xiàng)公式為:,設(shè)數(shù)列為,所以,于是有,故答案為:14、【解析】構(gòu)造新函數(shù),求導(dǎo)根據(jù)導(dǎo)數(shù)大于等于零得到,構(gòu)造,求導(dǎo)得到單調(diào)區(qū)間,計算函數(shù)最小值得到答案.【詳解】當(dāng)時,不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當(dāng)時,,當(dāng)時,,所以,所以故答案為:15、【解析】由等差數(shù)列的性質(zhì)可得:.再利用已知即可得出【詳解】由等差數(shù)列的性質(zhì)可得:對于任意的都有,則故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),求和公式,考查了推理能力與計算能力,屬于中檔題16、【解析】根據(jù)根與系數(shù)的關(guān)系以及一元二次不等式的解法即可解出【詳解】由題意可知,,解得,所以即為,解得或,所以不等式的解集是故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、當(dāng)圓柱底面半徑為,高為時,總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時,總成本最底.18、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問1詳解】證明:因?yàn)槠矫妫矫?,平面,所以,且,因?yàn)?,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為19、(1)單調(diào)遞增區(qū)間(?∞,?1)和(4,+∞),單調(diào)遞減區(qū)間(?1,4)(2)【解析】(1)求出,令,由導(dǎo)數(shù)的正負(fù)即可得到函數(shù)f(x)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)求出函數(shù)在區(qū)間中的單調(diào)性,求出極大值和極小值以及區(qū)間端點(diǎn)的函數(shù)值,比較大小即可得到答案【小問1詳解】由函數(shù)得,令,解得x<?1或x>4,;令,解得?1<x<4,故函數(shù)f(x)的單調(diào)遞增區(qū)間為(?∞,?1)和(4,+∞),單調(diào)遞減區(qū)間為(?1,4);【小問2詳解】由(1)可知,當(dāng)x∈[?3,?1)時,,f(x)單調(diào)遞增,當(dāng)x∈(?1,4)時,,f(x)單調(diào)遞減,當(dāng)x∈(4,6]時,,f(x)單調(diào)遞增,所以當(dāng)x=?1時,函數(shù)f(x)取得極大值f(?1)=,當(dāng)x=4時,函數(shù)f(x)取得極小值f(4)=,又,所以當(dāng)x∈[?3,6]時,函數(shù)f(x)的值域?yàn)?0、(1)(2)【解析】(1)求出直線的定點(diǎn),再由定點(diǎn)在圓上得出切點(diǎn)坐標(biāo);(2)由(1)知,證明為直角三角形,求出,,最后由三角形的面積公式求出的面積.【詳解】(1)圓可化為直線可化為,由解得即直線過定點(diǎn),由于,則點(diǎn)在圓上因?yàn)閘與圓C相切,所以切點(diǎn)坐標(biāo)為(2)因?yàn)閘與圓C交于A,B,所以點(diǎn)如下圖所示,與相交于點(diǎn),由以及圓的對稱性可知,點(diǎn)為的中點(diǎn),且由,則直線的方程為圓心到直線的距離為,即直線與圓相切即,則因?yàn)椋浴军c(diǎn)睛】關(guān)鍵點(diǎn)睛:在第一問中,關(guān)鍵是先確定直線過定點(diǎn),再由定點(diǎn)在圓上,從而確定切點(diǎn)的坐標(biāo).21、(1)(2)或.【解析】(1)根據(jù)離心率可得的關(guān)系,再將的坐標(biāo)代入方程后可求,從而可得橢圓的方程.(2)設(shè)直線的方程為,,結(jié)合內(nèi)切圓的半徑為可得,聯(lián)立直線方程和橢圓方程,消元后結(jié)合韋達(dá)定理可得關(guān)于的方程,求出其解后可得直線方程.【小問1詳解】因?yàn)闄E圓的離心率為,故可設(shè),故橢圓方程為,代入得,故,故橢圓方程為:.【小問2詳解】的周長為,故.設(shè),由題設(shè)可得直線與軸不重合,故可設(shè)直線,則,由可得,整理得到,此時,故,解得,故直線的方程為:或.22、(1)不夠;(2)將污水處理池建

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論