版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Part1MechanicsChapter4FundamentalsofRigidBodyMechnics4-1KinematicsofRotationsaboutaFixedAxis4-2Fundamentalsofthedynamicsofrigidbodyrotationaboutafixedaxis4-3CalculatingtheRotationalInertia4-4Applicationofthelawofrotation4-5KineticEnergyandWorkinRotationalMotion4-6AngularMomentumofaRigidBodyandConservationofAngularMomentumContents:24-1KinematicsofRotationsaboutaFixedAxis4.1.1RigidBodyArigidbodyisabodythatallitspartslocktogetherandwithoutanychangeinitsshape.TranslationalMotionIfabodyismovingsuchthatalinedrawnbetweenanytwoofitsinternalpointsremainsparalleltoitself,thebodyistranslating.4.1.2BasicmotionofaRigidBody4-1KinematicsofRotationsaboutaFixedAxisRotationalMotionIfabodyismovingsuchthatalinedrawnbetweenanytwoofitsinternalpointsdoesnotparalleltoitself,thebodyisspinning.True
or
false
question:Thetrajectoryofeachpointonarigidbodyisacurve,anditsmotioncannotbetranslational.4.1.2BasicmotionofaRigidBody4-1KinematicsofRotationsaboutaFixedAxisCompositionofmotionsTranslationandrotationaroundafixedaxisaretwobasicmotionsofarigidbody.Variouscomplexmotionscanbedecomposedintoseveralbasicmotions4.1.2BasicmotionofaRigidBody4-1KinematicsofRotationsaboutaFixedAxisTherotationoccursaboutanaxisthatdoesnotmove.RotationaxisRotationplaneReferenceline74-1KinematicsofRotationsaboutaFixedAxis4.1.3RotationaboutaFixed-axis4-1TheKinematicsofRotationsaboutaFixedAxisTherotationoccursaboutanaxisthatdoesnotmove.4.1.3RotationaboutaFixed-axis4-1TheKinematicsofRotationsaboutaFixedAxisRotationaxisPBody
zO
ReferencelinexyEachparticlemovesinacircleinitsownplaneofrotation.RotationplaneZeroangularposition
Right-handrule
4.1.3RotationaboutaFixed-axis4-1TheKinematicsofRotationsaboutaFixedAxisRotationaboutaFixed-axiszRotationaxisPBody
O
ReferencelinexyRotationplaneZeroangularposition
Motionfunctionofarotatingbody:=(t)
ispositivewithcounterclockwisedirectionandnegativewithclockwisedirection.4-1TheKinematicsofRotationsaboutaFixedAxisRotationaboutaFixed-axisRotationaxisP
Body
zO
ZeroangularpositionReferencelinexy
Rotationplane
Axisz
Axisz
SpeedingupSlowingdown4-1TheKinematicsofRotationsaboutaFixedAxisRelatingwithLinearandAngularVariablesPosition
Velocity
Acceleration
AngularLinear
Displacement
Aristotlesaid:givemealever,Icanmovetheearth.4.2.1Torque4-2ThedynamicsofrigidbodyrotationaboutafixedaxisThequantitativemeasureofthetendencyofaforcetocauseorchangetherotationalmotionofabodyiscalledtorque.LineofactionMomentarmdUnits:N
mDefinitionoftorquerelativetoapointVectorformoftorqueRight-handrule4.2.1Torque4-2ThedynamicsofrigidbodyrotationaboutafixedaxisDefinitionoftorquerelativetoarigidbodyorVectorformoftorqueRight-handrule
A
4.2.1Torque4-2Thedynamicsofrigidbodyrotationaboutafixedaxis4.2.2Thelawofrotation(Newton’ssecondlawforrotation)Supposethatthereareexternalforceandinternalforceactingontherigidbody.Forithmasselement:
mi,ri,Fi,φi,fi,θiConsiderthetangentialcomponentMultiplyingthisequationbyri
Forallelements=0RotationLaw4.2.2Thelawofrotation(Newton’ssecondlawforrotation)IfarigidbodyconsistsofafewparticlesIfarigidbodyconsistsofagreatmanyofparticles(itiscontinuous)MassofrigidbodyRotationalinertiadependsonfollowingfactors:DistributionofthemassofrigidbodyPositionofrotationaxis4-3CalculatingtheRotationalInertia4-3CalculatingtheRotationalInertiaIfarigidbodyconsistsofafewparticles
Ifarigidbodyconsistsofagreatmanyofparticles(itiscontinuous)
MassofrigidbodyRotationalinertiadependsonfollowingfactors:DistributionofthemassofrigidbodyPositionofrotationaxis
Lineardistribution:Surfacedistribution:Volumedistribution:LinearmassdensitySurfacemassdensityVolumemassdensity
ExampleCalculatetherotationalinertiaofathin,uniformrodofmassMandlengthL,aboutdifferentaxesasshown.
Solution:TherotationaxisthroughtheleftendTherotationaxisthroughthecenterperpendiculartolength
ExampleCalculatetherotationalinertiaofathin,uniformringofmassMandradiusR,iftherotationaxisisthroughcenterandperpendiculartothecircularplane.RExampleCalculatetherotationalinertiaofathin,uniformdiskofmassMandradiusR,iftherotationaxisisthroughcenterandperpendiculartothecircularplane.RExampleCalculatetherotationalinertiaofathin,uniformringofmassM.ItsinnerradiusisR1,outerradiusisR2,iftherotationaxisisthroughcenterandperpendiculartothecircularplane.R1R2ExampleIftherotationaxisisthroughcenterandperpendiculartothecircularplane,calculatetherotationalinertiaof(1)athin,uniformringofmassMandradiusR.(2)athin,uniformdiskofmassMandradiusR.
Solution:(1)(2)
ExampleShowthattherotationalinertiaofauniformannularcylinder(orring)ofinnerradiusR1,outerradiusR2,andmassMis,iftherotationaxisisthroughthecenteralongtheaxisofsymmetry.
Dividethecylinderintothinconcentriccylindricalringsorhoopsofthicknessdr,eachwithmass
isthemassdensityofthebody.
Then
Solution:TableParallel-axisTheoremIfJistherotationalinertiaofabodyoftotalmassMaboutanyaxis,andJcomistherotationalinertiaaboutanaxispassingthroughthecenterofmassandparalleltothefirstaxisbutadistancehaway,thenExampleDeterminetherotationalinertiaofasolidcylinderofradiusR,andmassMaboutanaxistangenttoitsedgeandparalleltoitssymmetryaxis,asshowninthefigure.Solution:
FromTable5-1Sinceh=R,wehave
4-3CalculatingtheRotationalInertiaParallel-axisTheorem
Checkpoint24-3CalculatingtheRotationalInertiaPerpendicular-axisTheorem(onlyvalidforplaneobjects)
Thesumoftherotationalinertiaofaplanebodyaboutanytwoperpendicularaxesintheplaneofthebodyisequaltotherotationalinertiaaboutanaxisthroughtheirpointofintersectionperpendiculartotheplaneoftheobject.since
Therefore
ProofofPerpendicular-axisTheorem4-3CalculatingtheRotationalInertia
Ring:
A
ring
and
a
disk
with
thesame
radius
Rand
massM,rolldowntheslopefromthesameheight.Whoreachesthegroundfirst?Why?4-3CalculatingtheRotationalInertia4.4ApplicationofthelawofrotationForallelements=0RotationLawAsshowninFigure,auniformdisk,withmassM=3.0kgandradiusR=20cm,mountedonafixedhorizontalaxle.Ablockwithmassm=1.5kghangsfromamasslesscordthatiswrappedaroundtherimofthedisk.Findtheaccelerationofthefallingblock,theangularaccelerationofthedisk,andthetensioninthecord.Supposethatthereisnofrictionattheaxle(g=9.8N/kg).
Solvingequations,Forthepulley:Form:
Angularacceleration:Tension:
ExampleExampleAnAtwoodMachineconsistsoftwomasses,m1
andm2,whichareconnectedbyamasslessinelasticcordthatpassesoverapully.IfthepulleyhasradiusRandrotationalinertiaIaboutitsaxle,Determinetheaccelerationofthemassm1andm2,andcomparetothesituationwheretherotationalinertiaofthepulleyisignored.33Solution:Form1:
Form2:
Forthepulley:
Example
34Solution:Chooseathinringofradiusrandthicknessdr,thenitsareaisdS=2πrdranditsmassisdm=σdS,inwhichσ=m/(πR2)isthesurfacemassdensity.ThefrictionforceexertedonthisringisthetorqueofthefrictionforceontheringisThetotaltorqueofthefrictionforceontheentirecircularplateisExampleThen,theangularaccelerationoftheplatecanbeobtainedbythelawofrotationβ=M/Jz=-4μg/3RWhentheplatestops,itsangularvelocityisSupposethattheplaterotatedConsequently,
Thenumberofrotationsis
beforeitsstop,thereshouldbe35
Theworkdonefrom
i
f:
4-5KineticEnergyandWorkinRotationMotion4.5.1WorkdonebytorqueArigidbodyistreatedasacollectionofparticles.
miisthemassoftheithparticleandviisitsspeed.
AsSo
DefineKineticenergyofrotation
4-5KineticEnergyandWorkinRotationMotion4.5.2KineticEnergyofrotation384-5KineticEnergyandWorkinRotationMotion394-5KineticEnergyandWorkinRotationMotionAforceactsonaparticle(one-dimensionalmotion)Atorqueactsonarigidbod,(rotationaboutafixedaxis)Example
ConservationofMechanicalEnergyTheworkdonebythegravityisFromthework
kineticenergytheorem,
θmgA
4-6AngularMomentumofaRigidBodyandConservationofAngularMomentumDefinitionofAngularMomentumforaparticleTheparticle’sangularmomentumwithrespecttooriginO
Magnitude:
Direction:Right-handruleUnit:Kg.m2/s4.6.1AngularmomentumofarigidbodyExampleAparticlemoveswithuniformvelocityparalleltothey-axisinthexy-plane.Thepathisdescribedby
Findtheangularmomentumoftheparticleabouttheorigin.Wemustfirstfindthespeedoftheparticle,
Then
UsingtheresultforvectorproductsreducestoTheAngularMomentumofaRigidBodyRotatingAboutaFixedAxis
Note:Sometimes,wedropsthesubscriptz,butyoumustrememberthattheangularmomentumdefinedbyL=Iistheangularmomentumabouttherotationaxis.Also,Iinthatequationistherotationalinertiaaboutthataxis.4.6.2AngularmomentumtheoremofrigidbodyRotationaxisPBody
O
ReferencelinexyRotationplaneZeroangularpositionFromthedefinitionofangularmomentumofarigidbody
Differentiatingeachsidewithrespecttotime,
So
Note:(1)Mnetmeansthenetexternaltorque.(2)Torqueandangularmomentummustbemeasuredrelativetothesameaxis.Newton’sSecondLawinAngularForm4.6.2AngularmomentumtheoremofrigidbodyNewton’sSecondLawinAngularFormThe(vector)sumofallthetorquesactingonarigidbodyisequaltothetimerateofchangeoftheangularmomentumofthatbodywithrespecttothesameaxis.4.6.2Angularmomentumtheoremofrigidbody4.6.3ConservationofAngularMomentumBytheNewton’ssecondlawinangularform
Ifnonetexternaltorqueactsonthesystem:
or
Ifthenetexternaltorqueactingonasystemiszero,theangularmomentumofthesystemremainsconstant,nomatterwhatchangestakeplaceinthesystem.
Note:(1)HoldbeyondthelimitationofNewton’smechanics.(2)Applicationofthelawofconservationofangularmomentum.4.6.3ConservationofAngularMomentum4.6.4ConservationofAngularMomentuminEngineeringTechnology50ExamplelO
Solution:Thisproblemcanbedividedintothreesimpleprocesses(1)Selectthesystemcomposedoftherodandtheearthastheresearchobject
(2)
Selectthesystemcomposedoftherodandtheblockastheresearchobject,theangularmomentumandtheenergyofthesystemisconserved.
51ExamplelO
Solution:Thisproblemcanbedividedintothreesimpleprocesses(3)Selecttheobjectblockastheresearchobject,lettheobjectblockslideontheh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026陜西長嶺紡織機電科技有限公司招聘(13人)筆試備考題庫及答案解析
- 2026年征兵工作心理考試題庫及答案1套
- 2026福建廈門市工人文化宮合同制職工招聘1人筆試參考題庫及答案解析
- 2026年浙江省衢州市單招職業(yè)傾向性考試題庫及答案1套
- 2026年湖北職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性考試模擬測試卷及答案1套
- 2026河南鄭州大學(xué)物理學(xué)院人工微結(jié)構(gòu)課題組招聘科研助理1人筆試備考試題及答案解析
- 2026年桂林師范高等??茖W(xué)校單招職業(yè)適應(yīng)性考試題庫附答案
- 2026年河南物流職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫附答案
- 2026福建泉州德化閩投抽水蓄能有限公司招聘筆試參考題庫及答案解析
- 2025廣西南寧市良慶區(qū)總工會招聘工作人員1人筆試備考題庫及答案解析
- 2026年共青團中央所屬單位高校畢業(yè)生公開招聘66人備考題庫及參考答案詳解
- 2026年6級英語模擬真題及答案
- 2025內(nèi)蒙古鄂爾多斯市委政法委所屬事業(yè)單位引進高層次人才3人考試題庫含答案解析(奪冠)
- 2025年全國單獨招生考試綜合試卷(附答案) 完整版2025
- 2025-2026學(xué)年外研版八年級上冊英語期末模擬考試題(含答案)
- 洗衣液宣傳課件
- “五個帶頭”方面對照發(fā)言材料二
- TTAF 241.1-2024 支持衛(wèi)星通信的移動智能終端技術(shù)要求和測試方法 第1部分:多模天通衛(wèi)星終端
- 奶茶品牌2026年新品研發(fā)上市流程
- 日常飲食營養(yǎng)搭配
- 上海醫(yī)療收費目錄
評論
0/150
提交評論