吉林省長春二中2025年高二上數(shù)學期末復習檢測試題含解析_第1頁
吉林省長春二中2025年高二上數(shù)學期末復習檢測試題含解析_第2頁
吉林省長春二中2025年高二上數(shù)學期末復習檢測試題含解析_第3頁
吉林省長春二中2025年高二上數(shù)學期末復習檢測試題含解析_第4頁
吉林省長春二中2025年高二上數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省長春二中2025年高二上數(shù)學期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“存在,使得”的否定為()A.存在, B.對任意,C對任意, D.對任意,2.若定義在R上的函數(shù)的圖象如圖所示,為函數(shù)的導函數(shù),則不等式的解集為()A. B.C. D.3.若“”是“”的充分不必要條件,則實數(shù)m的值為()A.1 B.C.或1 D.或4.直線與橢圓交于兩點,以線段為直徑的圓恰好經過橢圓的左焦點,則此橢圓的離心率為()A B.C. D.5.等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準線交于兩點,且則的實軸長為A.1 B.2C.4 D.86.設為等差數(shù)列的前項和,若,,則公差的值為()A. B.2C.3 D.47.已知數(shù)列中,其前項和為,且滿足,數(shù)列的前項和為,若對恒成立,則實數(shù)的值可以是()A. B.2C.3 D.8.已知f(x)是定義在R上的偶函數(shù),當時,,且f(-1)=0,則不等式的解集是()A. B.C. D.9.在區(qū)間上隨機取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.10.年月日我國公布了第七次全國人口普查結果.自新中國成立以來,我國共進行了七次全國人口普查,如圖為我國歷次全國人口普查人口性別構成及總人口性別比(以女性為,男性對女性的比例)統(tǒng)計圖,則下列說法錯誤的是()A.第五次全國人口普查時,我國總人口數(shù)已經突破億B.第一次全國人口普查時,我國總人口性別比最高C.我國歷次全國人口普查總人口數(shù)呈遞增趨勢D.我國歷次全國人口普查總人口性別比呈遞減趨勢11.設等比數(shù)列的前項和為,若,則()A. B.C. D.12.的內角A,B,C的對邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________14.拋物線的準線方程是________15.已知直線和互相平行,則實數(shù)的值為___________.16.復數(shù)的共軛復數(shù)是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,右焦點F到上頂點的距離為.(1)求橢圓的方程;(2)是否存在過點F且與x軸不垂直的直線與橢圓交于A、B兩點,使得點C()在線段AB的中垂線上?若存在,求出直線l:若不存在,說明理曲.18.(12分)在平面直角坐標系中,已知菱形的頂點和所在直線的方程為.(1)求對角線所在直線的一般方程;(2)求所在直線的一般方程.19.(12分)已知橢圓的長軸在軸上,長軸長為4,離心率為,(1)求橢圓的標準方程,并指出它的短軸長和焦距.(2)直線與橢圓交于兩點,求兩點的距離.20.(12分)已知圓C過兩點,,且圓心C在直線上(1)求圓C的方程;(2)過點作圓C的切線,求切線方程21.(12分)已知兩定點,,動點與兩定點的斜率之積為(1)求動點M的軌跡方程;(2)設(1)中所求曲線為C,若斜率為的直線l過點,且與C交于P,Q兩點.問:在x軸上是否存在一點T,使得對任意且,都有(其中,分別表示,的面積).若存在,請求出點T的坐標;若不存在,請說明理由22.(10分)為了解某市家庭用電量的情況,該市統(tǒng)計局調查了若干戶居民去年一年的月均用電量(單位:),得到如圖所示的頻率分布直方圖.(1)估計月均用電量的眾數(shù);(2)求a的值;(3)為了既滿足居民的基本用電需求,又提高能源的利用效率,市政府計劃采用階梯電價,月均用電量不高于平均數(shù)的為第一檔,高于平均數(shù)的為第二檔,已知某戶居民月均用電量為,請問該戶居民應該按那一檔電價收費,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.2、A【解析】由函數(shù)單調性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負,,可化為:或,解得或故選:A3、B【解析】利用定義法進行判斷.【詳解】把代入,得:,解得:或.當時,可化為:,解得:,此時“”是“”的充要條件,應舍去;當時,可化為:,解得:或,此時“”是“”的充分不必要條件.故.故選:B4、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關系,則橢圓離心率可求.【詳解】設橢圓的左右焦點分別為,如下圖:因為以線段為直徑的圓恰好經過橢圓的左焦點,所以且,所以,又因為的傾斜角為,所以,所以為等邊三角形,所以,所以,因為,所以,所以,所以,所以,故選:D.5、B【解析】設等軸雙曲線的方程為拋物線,拋物線準線方程為設等軸雙曲線與拋物線的準線的兩個交點,,則,將,代入,得等軸雙曲線的方程為的實軸長為故選6、C【解析】根據(jù)等差數(shù)列前項和公式進行求解即可.【詳解】,故選:C7、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進行適當放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因為對恒成立,當時,則恒成立,當時,,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對恒成立,必須滿足.故選:D8、D【解析】根據(jù)題意可知,當時,,即函數(shù)在上單調遞增,再結合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調性,進而解得答案.【詳解】由題意,當時,,則函數(shù)在上單調遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調遞增,而f(-1)=0,則.于是當時,.故選:D.9、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D10、D【解析】根據(jù)統(tǒng)計圖判斷各選項的對錯.【詳解】由統(tǒng)計圖第五次全國人口普查時,男性和女性人口數(shù)都超過6億,故總人口數(shù)超過12億,A對,由統(tǒng)計圖,第一次全國人口普查時,我國總人口性別比為107.56,超過余下幾次普查的人口的性別比,B對,由統(tǒng)計圖可知,我國歷次全國人口普查總人口數(shù)呈遞增趨勢,C對,由統(tǒng)計圖可知,第二次,第三次,第四次,第五次時總人口性別比呈遞增趨勢,D錯,D錯,故選:D.11、C【解析】利用等比數(shù)列前項和的性質,,,,成等比數(shù)列求解.【詳解】解:因為數(shù)列為等比數(shù)列,則,,成等比數(shù)列,設,則,則,故,所以,得到,所以.故選:C.12、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因為,所以,則,所以,所以是等腰三角形.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.3②.5【解析】根據(jù)莖葉圖進行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.14、【解析】將拋物線方程化為標準形式,從而得到準線方程.【詳解】拋物線方程可化為:拋物線準線方程為:故答案為【點睛】本題考查拋物線準線的求解,易錯點是未將拋物線方程化為標準方程.15、【解析】根據(jù)直線平行的充要條件即可求出實數(shù)的值.詳解】由直線和互相平行,得,即.故答案為:.16、【解析】利用復數(shù)除法化簡,由共軛復數(shù)的概念寫出即可.【詳解】,∴.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)由題意可得,,求得的值即可求解;(2)由(1)得,假設存在滿足條件的直線:,代入橢圓方程消去可得、,由中點坐標公式可得中點的坐標,由求得的值即可求解.小問1詳解】由題意可得,,,解得,,所以橢圓的方程為【小問2詳解】由(1)得,假設存在滿足條件的直線:,代入橢圓方程整理可得,設,,則,,可得,則線段的中點坐標為,所以,則,解得:,所以存在直線,且直線的方程為18、(1)(2)【解析】(1)首先求的中點,再利用垂直關系求直線的斜率,即可求解;(2)首先求點的坐標,再求直線的斜率,求得直線的斜率,利用點斜式直線方程,即可求解.【小問1詳解】由和得:中點四邊形為菱形,,且中點,對角線所在直線方程為:,即:.【小問2詳解】由,解得:,,,,直線的方程為:,即:.19、(1),短軸長為,焦距為;(2).【解析】(1)由長軸得,再由離心率求得,從而可得后可得橢圓方程;(2)直線方程與橢圓方程聯(lián)立方程組求得交點坐標后可得距離【詳解】(1)由已知:,,故,,則橢圓的方程為:,所以橢圓的短軸長為,焦距為.(2)聯(lián)立,解得,,所以,,故20、(1).(或標準形式)(2)或【解析】(1)根據(jù)題意,求出中垂線方程,與直線聯(lián)立,可得圓心的坐標,求出圓的半徑,即可得答案;(2)分切線的斜率存在與不存在兩種情況討論,求出切線的方程,綜合可得答案【小問1詳解】解:根據(jù)題意,因為圓過兩點,,設的中點為,則,因為,所以的中垂線方程為,即又因為圓心在直線上,聯(lián)立,解得,所以圓心,半徑,故圓的方程為,【小問2詳解】解:當過點P的切線的斜率不存在時,此時直線與圓C相切當過點P的切線斜率k存在時,設切線方程為即(*)由圓心C到切線的距離,可得將代入(*),得切線方程為綜上,所求切線方程為或21、(1)(2)存在;【解析】(1)設出點的坐標,根據(jù),即可直接求出動點M的軌跡方程;(2)根據(jù)題意寫出直線的方程,把直線的方程與曲線的方程聯(lián)立,消元,寫韋達;根據(jù)條件,同時結合三角形的面積公式可得出;從而結合韋達定理可求出點T的坐標.【小問1詳解】設,由,得,即,所以動點M的軌跡方程為.【小問2詳解】設PT與RT夾角為,QT與RT夾角為,因為,所以,即,所以,設,,,直線l的方程為,因為,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在點,使得對任意且,都有.22、(1)175(2)0.004(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論