2026屆廣東省汕頭市達濠華橋中學、東廈中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
2026屆廣東省汕頭市達濠華橋中學、東廈中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
2026屆廣東省汕頭市達濠華橋中學、東廈中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
2026屆廣東省汕頭市達濠華橋中學、東廈中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
2026屆廣東省汕頭市達濠華橋中學、東廈中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆廣東省汕頭市達濠華橋中學、東廈中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的單調(diào)遞減區(qū)間為A. B.C. D.2.已知平面向量,,且,則等于()A.(-2,-4) B.(-3,-6)C.(-5,-10) D.(-4,-8)3.已知a=log20.3,b=20.3,c=0.30.3,則a,b,c三者的大小關(guān)系是()A. B.C. D.4.已知集合A={x|x<2},B={x≥1},則A∪B=()A. B.C. D.R5.在平行四邊形中,設(shè),,,,下列式子中不正確的是()A. B.C. D.6.已知定義域為的函數(shù)滿足,且,若,則()A. B.C. D.7.已知函數(shù)是定義在R上的偶函數(shù),若對于任意不等實數(shù),,,不等式恒成立,則不等式的解集為()A. B.C. D.8.已知,,則A. B.C. D.9.函數(shù)的最大值是()A. B.1C. D.210.如果函數(shù)是定義在上的奇函數(shù),當時,函數(shù)的圖象如圖所示,那么不等式的解集是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若正數(shù)x,y滿足,則的最小值是_________12.已知一扇形的弧所對的圓心角為54°,半徑r=20cm,則扇形的周長為___cm.13.已知直線過兩直線和的交點,且原點到該直線的距離為,則該直線的方程為_____.14.定義為中的最大值,函數(shù)的最小值為,如果函數(shù)在上單調(diào)遞減,則實數(shù)的范圍為__________15.已知向量a,b滿足|a|=1,|b|=2,a與b的夾角為60°,則|a-b|=________16.的值為_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某地區(qū)今年1月、2月、3月患某種傳染病的人數(shù)分別為52、54、58;為了預測以后各月的患病人數(shù),根據(jù)今年1月、2月、3月的數(shù)據(jù),甲選擇了模型fx=ax2+bx+c,乙選擇了模型y=p?qx+r,其中y為患病人數(shù),x為月份數(shù),a,b,(1)如果4月、5月、6月份的患病人數(shù)分別為66、82、115,你認為誰選擇的模型較好?請說明理由;(2)至少要經(jīng)過多少個月患該傳染病的人數(shù)將會超過2000人?試用你認為比較好的模型解決上述問題.(參考數(shù)據(jù):210=1024,18.已知集合,集合.(1)若,求和(2)若,求實數(shù)的取值范圍.19.已知,非空集合,若S是P的子集,求m的取值范圍.20.(1)已知函數(shù)(其中,,)的圖象與x軸的交于A,B兩點,A,B兩點的最小距離為,且該函數(shù)的圖象上的一個最高點的坐標為.求函數(shù)的解析式(2)已知角的終邊在直線上,求下列函數(shù)的值:21.如圖,為等邊三角形,平面,,,為的中點.(Ⅰ)求證:平面;(Ⅱ)求證:平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)所給的二次函數(shù)的二次項系數(shù)大于零,得到二次函數(shù)的圖象是一個開口向上的拋物線,根據(jù)對稱軸,考查二次函數(shù)的變化區(qū)間,得到結(jié)果【詳解】解:函數(shù)的二次項的系數(shù)大于零,拋物線的開口向上,二次函數(shù)的對稱軸是,函數(shù)的單調(diào)遞減區(qū)間是故選A【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)題2、D【解析】由,求得,再利用向量的坐標運算求解.【詳解】解:因為,,且,所以m=-4,,所以=(-4,-8),故選:D3、D【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出大小關(guān)系【詳解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),則a,b,c三者的大小關(guān)系是b>c>a.故選:D【點睛】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題4、D【解析】利用并集定義直接求解即可【詳解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故選D【點睛】本題考查并集的求法,考查并集定義、不等式性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題5、B【解析】根據(jù)向量加減法計算,再進行判斷選擇.【詳解】;;;故選:B【點睛】本題考查向量加減法,考查基本分析求解能力,屬基礎(chǔ)題.6、A【解析】根據(jù),,得到求解.【詳解】因為,,所以,所以,所以,所以,,故選:A7、C【解析】由條件對于任意不等實數(shù),,不等式恒成立可得函數(shù)在上為減函數(shù),利用函數(shù)性質(zhì)化簡不等式求其解.【詳解】∵函數(shù)是定義在R上的偶函數(shù),∴,∴不等式可化為∵對于任意不等實數(shù),,不等式恒成立,∴函數(shù)在上為減函數(shù),又,∴,∴,∴不等式的解集為故選:C.8、A【解析】∵∴∴∴故選A9、C【解析】利用正余弦的差角公式展開化簡即可求最值.【詳解】,∵,∴函數(shù)的最大值是.故選:C.10、B【解析】圖1圖2如圖1為f(x)在(-3,3)的圖象,圖2為y=cosx圖象,要求得的解集,只需轉(zhuǎn)化為在尋找滿足如下兩個關(guān)系的區(qū)間即可:,結(jié)合圖象易知當時,,當時,,當時,,故選B.考點:奇函數(shù)的性質(zhì),余弦函數(shù)的圖象,數(shù)形結(jié)合思想.二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】由基本不等式結(jié)合得出最值.【詳解】(當且僅當時,等號成立),即最小值為.故答案為:12、6π+40【解析】根據(jù)角度制與弧度制的互化,可得圓心角,再由扇形的弧長公式,可得弧長,即可求解扇形的周長,得到答案.【詳解】由題意,根據(jù)角度制與弧度制的互化,可得圓心角,∴由扇形的弧長公式,可得弧長,∴扇形的周長為.【點睛】本題主要考查了扇形的弧長公式的應用,其中解答中熟記扇形的弧長公式,合理準確運算是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.13、或【解析】先求兩直線和的交點,再分類討論,先分析所求直線斜率不存在時是否符合題意,再分析直線斜率存在時,設(shè)斜率為,再由原點到該直線的距離為,求出,得到答案.【詳解】由和,得,即交點坐標為,(1)當所求直線斜率不存在時,直線方程為,此時原點到直線的距離為,符合題意;(2)當所求直線斜率存在時,設(shè)過該點的直線方程為,化為一般式得,由原點到直線的距離為,則,解得,得所求直線的方程為.綜上可得,所求直線的方程為或故答案為:或【點睛】本題考查了求兩直線的交點坐標,由點到直線的距離求參,還考查了對直線的斜率是否存在分類討論的思想,屬于中檔題.三、14、【解析】根據(jù)題意,將函數(shù)寫成分段函數(shù)的形式,分析可得其最小值,即可得的值,進而可得,由減函數(shù)的定義可得,解得的范圍,即可得答案【詳解】根據(jù)題意,,則,根據(jù)單調(diào)性可得先減后增,所以當時,取得最小值2,則有,則,因為為減函數(shù),必有,解可得:,即m的取值范圍為;故答案為.【點睛】本題考查函數(shù)單調(diào)性、函數(shù)最值的計算,關(guān)鍵是求出c的值.15、【解析】|a-b|=16、【解析】直接按照誘導公式轉(zhuǎn)化計算即可【詳解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案為:【點睛】本題考查誘導公式的應用:求值.一般采用“大角化小角,負角化正角”的思路進行轉(zhuǎn)化三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)應將y=2(2)至少經(jīng)過11個月患該傳染病的人數(shù)將會超過2000人【解析】(1)分別將x=1,2,3代入兩個解析式,求得a,b,c,p,q,r,求得解析式,并分別檢驗x=4,5,6時函數(shù)值與真實值的誤差,分析即可得答案.(2)令2x+50>2000,可求得【小問1詳解】由題意,把x=1,2,3代入fx得:解得a=1,b=-1,c=52,所以fx所以f4=42-4+52=64則f4-66=2,f把x=1,2,3代入y=gx=p?解得p=1,q=2,r=50,所以gx所以g4=24+50=66則g4-66=0,因為g4,g5,g6【小問2詳解】令2x+50>2000由于210=1024<1950<2048=2所以至少經(jīng)過11個月患該傳染病的人數(shù)將會超過2000人18、(1),;(2).【解析】⑴把代入求出,,即可得到和⑵由得到,由此能求出實數(shù)的取值范圍;解析:(1)若,則.,(2)因為,若,則,若,則或,綜上,19、【解析】由,解得.根據(jù)非空集合,S是P的子集,可得,解得范圍【詳解】由,解得.,非空集合.又S是P的子集,,解得的取值范圍是,【點睛】本題考查了不等式的解法和充分條件的應用,考查了推理能力與計算能力,意在考查學生對這些知識的理解掌握水平20、(1);(2)當為第一象限角時:;當為第三象限角時:.【解析】(1)由題意得,,進而求得,根據(jù)最高點結(jié)合可得,進而可求得的解析式;(2)由題意得為第一或第三象限角,分兩種情況由同角三角函數(shù)關(guān)系可解得結(jié)果.【詳解】(1)由題意得,,則,解得.根據(jù)最高點得,所以,即,因,所以,取得.所以.(2)由題意得,則為第一或第三象限角.當為第一象限角時:由得,代入得,又,所以,則.所以;當為第三象限角時:同理可得.21、(1)見解析(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論