江蘇省名校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
江蘇省名校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
江蘇省名校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
江蘇省名校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
江蘇省名校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省名校2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,若,則()A. B.C. D.2.七巧板是一種古老的中國傳統(tǒng)智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學(xué)用七巧板拼成了一個(gè)“鴿子”形狀,若從“鴿子”身上任取一點(diǎn),則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.3.直線的斜率是方程的兩根,則與的位置關(guān)系是()A.平行 B.重合C.相交但不垂直 D.垂直4.已知定義在區(qū)間上的函數(shù),,若以上兩函數(shù)的圖像有公共點(diǎn),且在公共點(diǎn)處切線相同,則m的值為()A.2 B.5C.1 D.05.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)據(jù),即“結(jié)繩計(jì)數(shù)”,如圖,一位古人在從右到左(即從低位到高位)依次排列的紅繩子上打結(jié),滿六進(jìn)一,用6來記錄每年進(jìn)的錢數(shù),由圖可得,這位古人一年收入的錢數(shù)用十進(jìn)制表示為()A.180 B.179C.178 D.1776.已知離散型隨機(jī)變量X的分布列如下:X123P則數(shù)學(xué)期望()A. B.C.1 D.27.某家庭準(zhǔn)備晚上在餐館吃飯,他們查看了兩個(gè)網(wǎng)站關(guān)于四家餐館的好評率,如下表所示,考慮每家餐館的總好評率,他們應(yīng)選擇()網(wǎng)站①評價(jià)人數(shù)網(wǎng)站①好評率網(wǎng)站②評價(jià)人數(shù)網(wǎng)站②好評率餐館甲100095%100085%餐館乙1000100%200080%餐館丙100090%100090%餐館丁200095%100085%A.餐館甲 B.餐館乙C.餐館丙 D.餐館丁8.已知命題若直線與拋物線有且僅有一個(gè)公共點(diǎn),則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.9.若圓上至少有三個(gè)點(diǎn)到直線的距離為1,則半徑的取值范圍是()A. B.C. D.10.函數(shù)的圖像大致是()A. B.C. D.11.下列說法正確的有()個(gè).①向量,,,不一定成立;②圓與圓外切③若,則數(shù)是數(shù),的等比中項(xiàng).A.1 B.2C.3 D.012.已知直線過拋物線C的焦點(diǎn),且與C的對稱軸垂直,與C交于A,B兩點(diǎn),P為C的準(zhǔn)線上一點(diǎn),若的面積為36,則等于()A.36 B.24C.12 D.6二、填空題:本題共4小題,每小題5分,共20分。13.若,滿足約束條件,則的最大值為_____________14.已知拋物線C:y2=2px過點(diǎn)P(1,1):①點(diǎn)P到拋物線焦點(diǎn)的距離為②過點(diǎn)P作過拋物線焦點(diǎn)的直線交拋物線于點(diǎn)Q,則△OPQ的面積為③過點(diǎn)P與拋物線相切的直線方程為x-2y+1=0④過點(diǎn)P作兩條斜率互為相反數(shù)的直線交拋物線于M,N兩點(diǎn),則直線MN的斜率為定值其中正確的是________.15.已知雙曲線C:的一條漸近線與直線l:平行,則雙曲線C的離心率是______16.已知等差數(shù)列的前n項(xiàng)和為,,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某港口船舶停靠的方案是先到先停,且每次只能??恳凰掖?(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù),若兩數(shù)之和為奇數(shù),則甲先???;若兩數(shù)之和為偶數(shù),則乙先??浚@種方式對雙方是否公平?請說明理由;(2)若甲、乙兩船在一晝夜內(nèi)到達(dá)該碼頭的時(shí)刻是等可能的.如果甲船停泊時(shí)間為1h,乙船停泊時(shí)間為2h,求它們中的任意一艘都不需要等待碼頭空出的概率.18.(12分)某班主任對全班名學(xué)生進(jìn)行了作業(yè)量多少與手機(jī)網(wǎng)游的調(diào)查,數(shù)據(jù)如下表:認(rèn)為作業(yè)多認(rèn)為作業(yè)不多總數(shù)喜歡手機(jī)網(wǎng)游不喜歡手機(jī)網(wǎng)游總數(shù)(1)若隨機(jī)地抽問這個(gè)班的一名學(xué)生,分別求事件“認(rèn)為作業(yè)不多”和事件“喜歡手機(jī)網(wǎng)游且認(rèn)為作業(yè)多”的概率;(2)若在“認(rèn)為作業(yè)多”的學(xué)生中已經(jīng)用分層抽樣的方法選取了名學(xué)生.現(xiàn)要從這名學(xué)生中任取名學(xué)生了解情況,求其中恰有名“不喜歡手機(jī)網(wǎng)游”的學(xué)生的概率19.(12分)已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離相等.(1)求動點(diǎn)的軌跡方程;(2)若過點(diǎn)且斜率為的直線與動點(diǎn)的軌跡交于、兩點(diǎn),求三角形AOB的面積.20.(12分)近年來,由于耕地面積的緊張,化肥的施用量呈增加趨勢,一方面,化肥的施用對糧食增產(chǎn)增收起到了關(guān)鍵作用,另一方面,也成為環(huán)境污染,空氣污染,土壤污染的重要來源之一.如何合理地施用化肥,使其最大程度地促進(jìn)糧食增產(chǎn),減少對周圍環(huán)境的污染成為需要解決的重要問題.研究糧食產(chǎn)量與化肥施用量的關(guān)系,成為解決上述問題的前提.某研究團(tuán)隊(duì)收集了10組化肥施用量和糧食畝產(chǎn)量的數(shù)據(jù)并對這些數(shù)據(jù)作了初步處理,得到了如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值,化肥施用量為x(單位:公斤),糧食畝產(chǎn)量為y(單位:百公斤).參考數(shù)據(jù):65091.552.51478.630.5151546.5表中.(1)根據(jù)散點(diǎn)圖判斷與,哪一個(gè)適宜作為糧食畝產(chǎn)量y關(guān)于化肥施用量x的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;并預(yù)測化肥施用量為27公斤時(shí),糧食畝產(chǎn)量y的值;(3)經(jīng)生產(chǎn)技術(shù)提高后,該化肥的有效率Z大幅提高,經(jīng)試驗(yàn)統(tǒng)計(jì)得Z大致服從正態(tài)分布N),那這種化肥的有效率超過58%的概率約為多少?附:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為;②若隨機(jī)變量,則有,;③取.21.(12分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長為,圓的面積小于(1)求圓的標(biāo)準(zhǔn)方程;(2)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn)、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請說明理由22.(10分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點(diǎn)分別在棱、上·(1)若P是的中點(diǎn),證明:;(2)若平面,二面角的余弦值為,求四面體的體積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】結(jié)合等差中項(xiàng)和等比中項(xiàng)分別求出和,代值運(yùn)算化簡即可.【詳解】由是等比數(shù)列可得,是等差數(shù)列可得,所以,故選:A2、C【解析】設(shè)正方形邊長為1,求出七巧板中“4”這一塊的面積,然后計(jì)算概率【詳解】設(shè)正方形邊長為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長為,面積為,所以概率為故選:C3、C【解析】由韋達(dá)定理可得方程的兩根之積為,從而可知直線、的斜率之積為,進(jìn)而可判斷兩直線的位置關(guān)系【詳解】設(shè)方程的兩根為、,則直線、的斜率,故與相交但不垂直故選:C4、C【解析】設(shè)兩曲線與公共點(diǎn)為,分別求得函數(shù)的導(dǎo)數(shù),根據(jù)兩函數(shù)的圖像有公共點(diǎn),且在公共點(diǎn)處切線相同,列出等式,求得公共點(diǎn)的坐標(biāo),代入函數(shù),即可求解.【詳解】根據(jù)題意,設(shè)兩曲線與公共點(diǎn)為,其中,由,可得,則切線的斜率為,由,可得,則切線斜率為,因?yàn)閮珊瘮?shù)的圖像有公共點(diǎn),且在公共點(diǎn)處切線相同,所以,解得或(舍去),又由,即公共點(diǎn)的坐標(biāo)為,將點(diǎn)代入,可得.故選:C.5、D【解析】由于從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,所以從右到左的數(shù)分別為、、,然后把它們相加即可.【詳解】(個(gè)).所以古人一年收入的錢數(shù)用十進(jìn)制表示為個(gè).故選:D.6、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D7、D【解析】根據(jù)給定條件求出各餐館總好評率,再比較大小作答.【詳解】餐館甲的總好評率為:,餐館乙的總好評率為:,餐館丙的好評率為:,餐館丁的好評率為:,顯然,所以餐館丁的總好評率最高.故選:D8、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時(shí)直線與拋物線相交,可判斷命題為假;當(dāng)時(shí),,命題為真,根據(jù)復(fù)合命題的真假關(guān)系,即可得出結(jié)論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個(gè)交點(diǎn),直線與拋物不相切,可得命題是假命題,當(dāng)時(shí),,方程表示橢圓命題是真命題,則是真命題.故選:B.【點(diǎn)睛】本題考查復(fù)合命題真假的判斷,屬于基礎(chǔ)題.9、B【解析】先求出圓心到直線的距離為,由此可知當(dāng)圓的半徑為時(shí),圓上恰有三點(diǎn)到直線的距離為,當(dāng)圓的半徑時(shí),圓上恰有四個(gè)點(diǎn)到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標(biāo)為,圓心到直線為,∵圓上至少有三個(gè)點(diǎn)到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.10、B【解析】由導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及指數(shù)的增長趨勢即可判斷.【詳解】當(dāng)時(shí),,∴在上單調(diào)遞增,當(dāng)時(shí),,∴在上單調(diào)遞減,排除A、D;又由指數(shù)函數(shù)增長趨勢,排除C.故選:B11、A【解析】由向量數(shù)量積為實(shí)數(shù),以及向量共線定理,即可判斷①;求出圓心距,即可判斷兩圓位置關(guān)系,從而判斷②;取,即可判斷③【詳解】對于①,與共線,與共線,故不一定成立,故①正確;對于②,圓的圓心為,半徑為,圓可變形為,故其圓心為,半徑為,則圓心距,由,所以兩圓相交,故②錯(cuò)誤;對于③,若,取,則數(shù)不是數(shù)的等比中項(xiàng),故③錯(cuò)誤故選:A12、C【解析】設(shè)拋物線方程為,根據(jù)題意由求解.【詳解】設(shè)拋物線方程為:,因?yàn)橹本€過拋物線C的焦點(diǎn),且與C的對稱軸垂直,所以,又P為C的準(zhǔn)線上一點(diǎn),所以點(diǎn)P到直線AB的距離為p,所以,解得,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】首先根據(jù)題中所給的約束條件,畫出相應(yīng)的可行域,再將目標(biāo)函數(shù)化成斜截式,之后在圖中畫出直線,在上下移動的過程中,結(jié)合的幾何意義,可以發(fā)現(xiàn)直線過B點(diǎn)時(shí)取得最大值,聯(lián)立方程組,求得點(diǎn)B的坐標(biāo)代入目標(biāo)函數(shù)解析式,求得最大值.【詳解】根據(jù)題中所給的約束條件,畫出其對應(yīng)的可行域,如圖所示:由,可得,畫出直線,將其上下移動,結(jié)合的幾何意義,可知當(dāng)直線在y軸截距最大時(shí),z取得最大值,由,解得,此時(shí),故答案為6.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.14、②③④【解析】由拋物線過點(diǎn)可得拋物線的方程,求出焦點(diǎn)的坐標(biāo)及準(zhǔn)線方程,由拋物線的性質(zhì)可判斷①;求出直線的方程與拋物線聯(lián)立切線的坐標(biāo),進(jìn)而求出三角形的面積,判斷②;設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立求得斜率,進(jìn)而可得在處的切線方程,從而判斷③;設(shè)直線的方程為拋物線聯(lián)立求出的坐標(biāo),同理求出的坐標(biāo),進(jìn)而求出直線的斜率,從而可判斷④【詳解】解:由拋物線過點(diǎn),所以,所以,所以拋物線的方程為:;可得拋物線的焦點(diǎn)的坐標(biāo)為:,,準(zhǔn)線方程為:,對于①,由拋物線的性質(zhì)可得到焦點(diǎn)的距離為,故①錯(cuò)誤;對于②,可得直線的斜率,所以直線的方程為:,代入拋物線的方程可得:,解得,所以,故②正確;對于③,依題意斜率存在,設(shè)直線方程為y-1=k(x-1),與y2=x聯(lián)立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切線方程為x-2y+1=0,故③正確;對于④,設(shè)直線的方程為:,與拋物線聯(lián)立可得,所以,所以,代入直線中可得,即,,直線的方程為:,代入拋物線的方程,可得,代入直線的方程可得,所以,,所以為定值,故④正確故答案為:②③④.15、【解析】先用兩直線平行斜率相等求出,再利用離心率的定義求解即可.【詳解】由題意可得雙曲線C的一條漸近線方程為,則,即,則,故雙曲線C的離心率故答案為:.16、-1【解析】由已知及等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式,列方程求基本量即可.【詳解】若公差為,則,可得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不公平,理由見解析.(2)【解析】(1)通過計(jì)算概率來進(jìn)行判斷.(2)利用幾何概型計(jì)算出所求概率.【小問1詳解】兩數(shù)之和為奇數(shù)的概率為,兩數(shù)之和為偶數(shù)的概率為,兩個(gè)概率不相等,所以不公平.【小問2詳解】設(shè)甲到的時(shí)刻為,乙到的時(shí)刻為,則,若它們中的任意一艘都不需要等待碼頭空出,則或,畫出可行域如下圖陰影部分所示,所以所求的概率為:.18、(1)事件“認(rèn)為作業(yè)不多”和事件“喜歡手機(jī)網(wǎng)游且認(rèn)為作業(yè)多”的概率分別為、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)確定所選的名學(xué)生中,“不喜歡手機(jī)網(wǎng)游”和“喜歡手機(jī)網(wǎng)游”的學(xué)生人數(shù),加以標(biāo)記,列舉出所有的基本事件,確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由題意可知,全班名學(xué)生中,“認(rèn)為作業(yè)不多”的學(xué)生人數(shù)為人,“喜歡手機(jī)網(wǎng)游且認(rèn)為作業(yè)多”的學(xué)生人數(shù)為人,因此,隨機(jī)地抽問這個(gè)班的一名學(xué)生,事件“認(rèn)為作業(yè)不多”的概率為,事件“喜歡手機(jī)網(wǎng)游且認(rèn)為作業(yè)多”的概率為.【小問2詳解】解:在“認(rèn)為作業(yè)多”的學(xué)生中已經(jīng)用分層抽樣的方法選取了名學(xué)生,這名學(xué)生中“不喜歡手機(jī)網(wǎng)游”的學(xué)生人數(shù)為,記為,名學(xué)生中“喜歡手機(jī)網(wǎng)游”的學(xué)生人數(shù)為,分別記為、、、,從這名學(xué)生中任取名學(xué)生,所有的基本事件有:、、、、、、、、、,共種,其中,事件“恰有名“不喜歡手機(jī)網(wǎng)游”的學(xué)生”包含的基本事件有:、、、,共種,故所求概率為.19、(1)(2)【解析】小問1:由拋物線的定義可求得動點(diǎn)的軌跡方程;小問2:可知直線的方程為,設(shè)點(diǎn)、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結(jié)合面積公式即可求解小問1詳解】由題意點(diǎn)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,所以,則,所以動點(diǎn)的軌跡方程是.【小問2詳解】由已知直線的方程是,設(shè)、,由得,,所以,則,故,20、(1);(2);810公斤;(3).【解析】(1)根據(jù)散點(diǎn)圖的變化趨勢,結(jié)合給定模型的性質(zhì)直接判斷適合的模型即可.(2)將(1)中模型取對得,結(jié)合題設(shè)及表格數(shù)據(jù)求及參數(shù),進(jìn)而可得參數(shù)c,即可確定回歸方程,進(jìn)而估計(jì)時(shí)糧食畝產(chǎn)量y的值.(3)由題設(shè)知,結(jié)合特殊區(qū)間的概率值及正態(tài)分布的對稱性求即可.【小問1詳解】根據(jù)散點(diǎn)圖,呈現(xiàn)非線性的變化趨勢,故更適合作為關(guān)于的回歸方程類型.【小問2詳解】對兩邊取對數(shù),得,即,由表中數(shù)據(jù)得:,,,則,∴關(guān)于的回歸方程為,當(dāng)時(shí),,∴當(dāng)化肥施用量為27公斤時(shí),糧食畝產(chǎn)量約為810公斤.小問3詳解】依題意,,則有,∴,則,∴這種化肥的有效率超過58%的概率約為.21、(1);(2)不存在,理由見解析.【解析】(1)設(shè)圓心,設(shè)圓的半徑為,可得出,根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的方程,求出的值,可得出的值,進(jìn)而可得出圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在,可設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與圓的方程聯(lián)立,由可求得的取值范圍,列出韋達(dá)定理,分析可得,可求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論