版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
大連市第九中學(xué)2025年高二上數(shù)學(xué)期末統(tǒng)考試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是數(shù)列的前項(xiàng)和,,則數(shù)列是()A.公比為3的等比數(shù)列 B.公差為3的等差數(shù)列C.公比為的等比數(shù)列 D.既非等差數(shù)列,也非等比數(shù)列2.已知等比數(shù)列的前n項(xiàng)和為,且,則()A.20 B.30C.40 D.503.若直線與直線垂直,則a的值為()A.2 B.1C. D.4.在平面直角坐標(biāo)系中,雙曲線的右焦點(diǎn)為,過雙曲線上一點(diǎn)作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.5.已知直線過點(diǎn),當(dāng)直線與圓有兩個(gè)不同的交點(diǎn)時(shí),其斜率的取值范圍是()A. B.C. D.6.已知,為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足,那么點(diǎn)P到x軸的距離為()A. B.C. D.7.已知數(shù)列中,,,是的前n項(xiàng)和,則()A. B.C. D.8.中國古代數(shù)學(xué)著作算法統(tǒng)宗中有這樣一個(gè)問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見首日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:有一個(gè)人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達(dá)目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里9.已知函數(shù)的導(dǎo)數(shù)為,且,則()A. B.C.1 D.10.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.11.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應(yīng)填入()A.? B.?C.? D.?12.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓平分圓的周長(zhǎng),則直線被圓所截得的弦長(zhǎng)為____________14.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最上面一層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球…….設(shè)各層球數(shù)構(gòu)成一個(gè)數(shù)列,其中,,,則______15.如圖,在三棱錐中,,二面角的余弦值為,若三棱錐的體積為,則三棱錐外接球的表面積為______16.設(shè)實(shí)數(shù)x,y滿足,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和18.(12分)已知圓C的圓心在直線上,且過點(diǎn).(1)求圓C的方程;(2)若圓C與直線交于A,B兩點(diǎn),且,求m的值.19.(12分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(diǎn)(1)求證:CE//平面PAB;(2)若M是線段CE上一動(dòng)點(diǎn),則線段AD上是否存在點(diǎn),使MN//平面PAB?說明理由20.(12分)已知直線和的交點(diǎn)為(1)若直線經(jīng)過點(diǎn)且與直線平行,求直線的方程;(2)若直線經(jīng)過點(diǎn)且與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程21.(12分)已知過拋物線的焦點(diǎn)F且斜率為1的直線l交C于A,B兩點(diǎn),且(1)求拋物線C的方程;(2)求以C的準(zhǔn)線與x軸的交點(diǎn)D為圓心且與直線l相切的圓的方程22.(10分)在平面直角坐標(biāo)系中,已知圓,點(diǎn)P在圓上,過點(diǎn)P作x軸的垂線,垂足為是的中點(diǎn),當(dāng)P在圓M上運(yùn)動(dòng)時(shí)N形成的軌跡為C(1)求C的軌跡方程;(2)若點(diǎn),試問在x軸上是否存在點(diǎn)M,使得過點(diǎn)M的動(dòng)直線交C于兩點(diǎn)時(shí),恒有?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由得,然后利用與的關(guān)系即可求出【詳解】因?yàn)椋运援?dāng)時(shí),時(shí),所以故數(shù)列既非等差數(shù)列,也非等比數(shù)列故選:D【點(diǎn)睛】要注意由求要分兩步:1.時(shí),2.時(shí).2、B【解析】利用等比數(shù)列的前n項(xiàng)和公式即可求解.【詳解】設(shè)等比數(shù)列的首項(xiàng)為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.3、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A4、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長(zhǎng)相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡(jiǎn)得,解得(負(fù)值舍去).故選:A.5、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個(gè)不同的交點(diǎn)故選:A6、D【解析】設(shè),由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進(jìn)而求得,最后利用等面積法,即可求解【詳解】設(shè),,為雙曲線的兩個(gè)焦點(diǎn),設(shè)焦距為,,點(diǎn)P在雙曲線上,,,,,,的面積為,利用等面積法,設(shè)的高為,則為點(diǎn)P到x軸的距離,則,故選:D【點(diǎn)睛】本題考查雙曲線的性質(zhì),難度不大.7、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡(jiǎn),即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項(xiàng)和,則.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運(yùn)用裂項(xiàng)相消求和法.8、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項(xiàng)和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C9、B【解析】直接求導(dǎo),令求出,再將帶入原函數(shù)即可求解.【詳解】由得,當(dāng)時(shí),,解得,所以,.故選:B10、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項(xiàng).【詳解】由得,所以,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離為1,故選:B.11、C【解析】本題為計(jì)算前項(xiàng)和,模擬程序,實(shí)際計(jì)算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項(xiàng)和.易知,則,令,解得.即前7項(xiàng)的和.為故判斷框中應(yīng)填入“?”.故選:C.12、B【解析】根據(jù)條件概率的計(jì)算公式,得所求概率為,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據(jù)兩圓的公共弦過圓的圓心即可獲解【詳解】?jī)蓤A相減得公共弦所在的直線方程為由題知兩圓的公共弦過圓的圓心,所以即,又,所以到直線的距離所以直線被圓所截得的弦長(zhǎng)為故答案為:614、15【解析】由分析可知每次小球數(shù)量剛好是等差數(shù)列的求和,最后直接公式即可算出答案.【詳解】由題意可知,,所以,故答案為:1515、【解析】取的中點(diǎn),連接,,過點(diǎn)A作,垂足為,設(shè),利用三角形的邊角關(guān)系求出,利用錐體的體積公式求出的值,確定三棱錐外接球的球心,求解外接球的半徑,由表面積公式求解即可【詳解】取的中點(diǎn),連接,,過點(diǎn)A作,交DE的延長(zhǎng)線于點(diǎn),所以為二面角的平面角,設(shè),則,,所以,所以,EH=,因?yàn)槿忮F的體積為,所以,解得:,,設(shè)外接圓的圓心為,三棱錐外接球的球心為,連接,,,過點(diǎn)O作OF⊥AH于點(diǎn)F,則,,,,設(shè),則,,由勾股定理得:,解得:,所以三棱錐外接球的半徑滿足,則三棱錐的外接球的表面積為故答案為:【點(diǎn)睛】本題考查了幾何體的外接球問題,棱錐的體積公式的理解與應(yīng)用,解題的關(guān)鍵是確定外接球球心的位置,三棱錐的外接球的球心在過各面外心且與此面垂直的直線上,由此結(jié)論可以找到外接球的球心,16、5【解析】畫出可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】畫出可行域和目標(biāo)函數(shù)如圖所示:根據(jù)平移知,當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),有最小值為5.故答案為:5.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由等差數(shù)列以及等比中項(xiàng)的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項(xiàng)公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項(xiàng)和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項(xiàng)公式為;(2)由(1)得,,所以【點(diǎn)睛】關(guān)于數(shù)列前項(xiàng)和的求和方法:分組求和法:兩個(gè)數(shù)列等差或者等比數(shù)列相加時(shí)利用分組求和法計(jì)算;裂項(xiàng)相加法:數(shù)列的通項(xiàng)公式為分式時(shí)可考慮裂項(xiàng)相消法求和;錯(cuò)位相減法:等差乘以等比數(shù)列的情況利用錯(cuò)位相減法求和.18、(1)(2)或【解析】(1)由已知設(shè)圓C的方程為,點(diǎn)代入計(jì)算即可得出結(jié)果.(2)由已知可得圓心C到直線的距離,利用點(diǎn)到直線的距離公式計(jì)算即可求得值.【小問1詳解】設(shè)圓心坐標(biāo)為,半徑為,圓C的圓心在直線上,.則圓C的方程為,圓C過點(diǎn),則,解得:則,圓C的圓心坐標(biāo)為.則圓C的方程為;【小問2詳解】圓心C到直線的距離.則,解得或19、(1)證明見解析;(2)存在,理由見解析.【解析】(1)為中點(diǎn),連接,由中位線、線面平行的性質(zhì)可得四邊形為平行四邊形,再根據(jù)線面平行的判定即可證結(jié)論;(2)取中點(diǎn)N,連接,,根據(jù)線面、面面平行的性質(zhì)定理和判斷定理即可判斷存在性【小問1詳解】如下圖,若為中點(diǎn),連接,由E是PD的中點(diǎn),所以且,又BC//平面PAD,面,且面面,所以,且,所以四邊形為平行四邊形,故,而面,面,則面.小問2詳解】取中點(diǎn)N,連接,,∵E,N分別為,的中點(diǎn),∴,∵平面,平面,∴平面,線段存在點(diǎn)N,使得平面,理由如下:由(1)知:平面,又,∴平面平面,又M是上的動(dòng)點(diǎn),平面,∴平面PAB,∴線段存在點(diǎn)N,使得MN∥平面20、(1)(2)或【解析】(1)由已知可得交點(diǎn)坐標(biāo),再根據(jù)直線間的位置關(guān)系可得直線方程;(2)設(shè)直線方程,根據(jù)直線與兩坐標(biāo)軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設(shè)直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標(biāo)軸上的截距均不為,設(shè)直線方程為:,則直線與兩坐標(biāo)軸交點(diǎn)為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設(shè)直線的斜率為,則的方程為,當(dāng)時(shí),當(dāng)時(shí),所以,解得:或所以m的方程為或即:或.21、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達(dá)定理,再根據(jù)焦點(diǎn)弦公式計(jì)算可得;(2)由(1)可得,再利用點(diǎn)到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點(diǎn),∴直線l的方程為,聯(lián)立去,消去整理得設(shè),,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點(diǎn)睛】本題考查拋物線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.22、(1);(2)不存在,理由見解析.【解析】(1)設(shè),根據(jù)中點(diǎn)坐標(biāo)公式用N的坐標(biāo)表示P的坐標(biāo),將P的坐標(biāo)代入圓M的方程化簡(jiǎn)即可得N的軌跡方程;(2)假設(shè)存在,設(shè)M為(m,0),設(shè)直線l斜率為k,表示其方程,l方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 免疫性疾病的飲食輔助
- 遼寧省2025秋九年級(jí)英語全冊(cè)Unit5Whataretheshirtsmadeof課時(shí)6SectionB(3a-SelfCheck)課件新版人教新目標(biāo)版
- 2025年濕電子化學(xué)品項(xiàng)目發(fā)展計(jì)劃
- 干性皮膚的清潔與保養(yǎng)方法
- 腹瀉的藥物治療與護(hù)理配合
- 術(shù)前焦慮的識(shí)別與干預(yù)策略
- 護(hù)理實(shí)踐中的問題解決與決策制定
- 心臟瓣膜疾病的護(hù)理與跨學(xué)科合作
- 子宮肉瘤患者的日常護(hù)理
- 體位引流護(hù)理的社區(qū)推廣應(yīng)用
- 物流金融風(fēng)險(xiǎn)管理
- 國開24273丨中醫(yī)藥學(xué)概論(統(tǒng)設(shè)課)試題及答案
- 國家開放大學(xué)電大《當(dāng)代中國政治制度(本)》形考任務(wù)4試題附答案
- 河道臨時(shí)圍堰施工方案
- 2025年廣東省公需課《人工智能賦能制造業(yè)高質(zhì)量發(fā)展》試題及答案
- 有機(jī)肥可行性研究報(bào)告
- 2025年-基于華為IPD與質(zhì)量管理體系融合的研發(fā)質(zhì)量管理方案-新版
- 法律職業(yè)資格考試客觀題(試卷一)試卷與參考答案(2025年)
- 腹壁下動(dòng)穿支課件
- 廣西協(xié)美化學(xué)品有限公司年產(chǎn)7400噸高純有機(jī)過氧化物項(xiàng)目環(huán)評(píng)報(bào)告
- 智慧樹知道網(wǎng)課《艾滋病、性與健康》課后章節(jié)測(cè)試答案
評(píng)論
0/150
提交評(píng)論