安徽省黃山市屯溪一中2025年數(shù)學(xué)高二上期末達(dá)標(biāo)測試試題含解析_第1頁
安徽省黃山市屯溪一中2025年數(shù)學(xué)高二上期末達(dá)標(biāo)測試試題含解析_第2頁
安徽省黃山市屯溪一中2025年數(shù)學(xué)高二上期末達(dá)標(biāo)測試試題含解析_第3頁
安徽省黃山市屯溪一中2025年數(shù)學(xué)高二上期末達(dá)標(biāo)測試試題含解析_第4頁
安徽省黃山市屯溪一中2025年數(shù)學(xué)高二上期末達(dá)標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

安徽省黃山市屯溪一中2025年數(shù)學(xué)高二上期末達(dá)標(biāo)測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.二項(xiàng)式的展開式中,各項(xiàng)二項(xiàng)式系數(shù)的和是()A.2 B.8C.16 D.322.已知是拋物線上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),若,則()A1011 B.2020C.2021 D.20223.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.4.命題“,”的否定是()A., B.,C., D.,5.若存在,使得不等式成立,則實(shí)數(shù)k的取值范圍為()A. B.C. D.6.某考點(diǎn)配備的信號檢測設(shè)備的監(jiān)測范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機(jī)以每分鐘50米的速度從設(shè)備正東方向米的處出發(fā),沿處西北方向走向位于設(shè)備正北方向的處,則這名工作人員被持續(xù)監(jiān)測的時(shí)長為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘7.已知F為橢圓的右焦點(diǎn),A為C的右頂點(diǎn),B為C上的點(diǎn),且垂直于x軸.若直線AB的斜率為,則橢圓C的離心率為()A. B.C. D.8.在四面體中,點(diǎn)G是的重心,設(shè),,,則()A. B.C. D.9.?dāng)?shù)列滿足,,,則數(shù)列的前10項(xiàng)和為()A.60 B.61C.62 D.6310.已知斜三棱柱所有棱長均為2,,點(diǎn)、滿足,,則()A. B.C.2 D.11.等比數(shù)列的前項(xiàng)和為,前項(xiàng)積為,,當(dāng)最小時(shí),的值為()A.3 B.4C.5 D.612.函數(shù)的單調(diào)遞減區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是遞增等比數(shù)列,,則數(shù)列的前項(xiàng)和等于.14.已知點(diǎn)P是橢圓上的一點(diǎn),點(diǎn),則的最小值為____________.15.在長方體中,M、N分別是BC、的中點(diǎn),若,則______16.已知向量,,若向量與向量平行,則實(shí)數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且(1)求拋物線的方程;(2)過點(diǎn)作直線交拋物線于兩點(diǎn),設(shè),判斷是否為定值?若是,求出該定值;若不是,說明理由.18.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點(diǎn)M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值19.(12分)已知直線,以點(diǎn)為圓心的圓C與直線l相切(1)求圓C的標(biāo)方程;(2)過點(diǎn)的直線交圓C于A,B兩點(diǎn),且,求的方程20.(12分)已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)(4,0)的直線l交橢圓C于M、N兩點(diǎn),且OM⊥ON,求直線l的方程.21.(12分)已知橢圓左右焦點(diǎn)分別為,,離心率為,P是橢圓上一點(diǎn),且面積的最大值為1.(1)求橢圓的方程;(2)過的直線交橢圓于M,N兩點(diǎn),求的取值范圍.22.(10分)已知四邊形是菱形,四邊形是矩形,平面平面,,,G是的中點(diǎn)(1)證明:平面;(2)求二面角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)給定條件利用二項(xiàng)式系數(shù)的性質(zhì)直接計(jì)算作答.【詳解】二項(xiàng)式的展開式的各項(xiàng)二項(xiàng)式系數(shù)的和是.故選:D2、C【解析】結(jié)合向量坐標(biāo)運(yùn)算以及拋物線的定義求得正確答案.【詳解】設(shè),因?yàn)槭菕佄锞€上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C3、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.4、D【解析】根據(jù)含一個(gè)量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D5、C【解析】根據(jù)題意和一元二次不等式能成立可得對于,成立,令,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,即可求出.【詳解】存在,不等式成立,則,能成立,即對于,成立,令,,則,令,所以當(dāng),單調(diào)遞增,當(dāng),單調(diào)遞減,又,所以f(x)>-3,所以.故選:C6、C【解析】以設(shè)備的位置為坐標(biāo)原點(diǎn),其正東方向?yàn)檩S正方向,正北方向?yàn)檩S正方向建立平面直角坐標(biāo)系,求得直線和圓的方程,利用點(diǎn)到直線的距離公式和圓的弦長公式,求得的長,進(jìn)而求得持續(xù)監(jiān)測的時(shí)長.【詳解】以設(shè)備的位置為坐標(biāo)原點(diǎn),其正東方向?yàn)檩S正方向,正北方向?yàn)檩S正方向建立平面直角坐標(biāo)系,如圖所示,則,,可得,圓記從處開始被監(jiān)測,到處監(jiān)測結(jié)束,因?yàn)榈降木嚯x為米,所以米,故監(jiān)測時(shí)長為分鐘故選:C.7、D【解析】根據(jù)題意表示出點(diǎn)的坐標(biāo),再由直線AB的斜率為,列方程可求出橢圓的離心率【詳解】由題意得,,當(dāng)時(shí),,得,由題意可得點(diǎn)在第一象限,所以,因?yàn)橹本€AB的斜率為,所以,化簡得,所以,,得(舍去),或,所以離心率,故選:D8、B【解析】結(jié)合重心的知識以及空間向量運(yùn)算求得正確答案.【詳解】設(shè)是中點(diǎn),.故選:B9、B【解析】討論奇偶性,應(yīng)用等差、等比前n項(xiàng)和公式對作分組求和即可.【詳解】當(dāng)且為奇數(shù)時(shí),,則,當(dāng)且為偶數(shù)時(shí),,則,∴.故選:B.10、D【解析】以向量為基底向量,則,根據(jù)條件由向量的數(shù)量積的運(yùn)算性質(zhì),兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D11、B【解析】根據(jù)等比數(shù)列相關(guān)計(jì)算得到,,進(jìn)而求出與,代入后得到,利用指數(shù)函數(shù)和二次函數(shù)單調(diào)性得到當(dāng)時(shí),取得最小值.【詳解】顯然,由題意得:,,兩式相除得:,將代入,解得:,所以,所以,,所以,其中單調(diào)遞增,所以當(dāng)時(shí),取得最小值.故選:B12、A【解析】先求定義域,再由導(dǎo)數(shù)小于零即可求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】由得,所以函數(shù)的定義域?yàn)椋?,因?yàn)椋杂傻?,解得,所以函?shù)的單調(diào)遞減區(qū)間為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,,解得或者,而數(shù)列是遞增的等比數(shù)列,所以,即,所以,因而數(shù)列的前項(xiàng)和,故答案為.考點(diǎn):1.等比數(shù)列的性質(zhì);2.等比數(shù)列的前項(xiàng)和公式.14、【解析】設(shè),表示出,消去y,利用二次函數(shù)求最值即可.【詳解】設(shè),則.所以當(dāng)x=1時(shí),最小.故答案為:.15、-2【解析】作出圖像,根據(jù)幾何關(guān)系,結(jié)合空間向量的加減法運(yùn)算法則即可求解.【詳解】,∴,,,故答案為:-2.16、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)?,所以存在?shí)數(shù)使得.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是,0【解析】(1)根據(jù)題意,設(shè)拋物線的方程為:,則,,進(jìn)而根據(jù)得,進(jìn)而得答案;(2)直線的方程為,進(jìn)而聯(lián)立方程,結(jié)合韋達(dá)定理與向量數(shù)量積運(yùn)算化簡整理即可得答案.【小問1詳解】解:由題意,設(shè)拋物線的方程為:,所以點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,因?yàn)椋?,即,解?所以拋物線的方程為:【小問2詳解】解:設(shè)直線的方程為,則聯(lián)立方程得,所以,,因?yàn)?,所?所以為定值.18、(1)證明見解析(2)【解析】(1)連接BD交AC于點(diǎn)E,連接ME,由所給條件推理出CA⊥AD,進(jìn)而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點(diǎn),射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,再利用向量法求解二面角即可【小問1詳解】(1)連接BD交AC于點(diǎn)E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問2詳解】(2)如圖所示:以A為原點(diǎn),射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,∴,設(shè)平面PAB和平面MAC的一個(gè)法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.19、(1)(2)或【解析】(1)根據(jù)點(diǎn)到直線的距離公式求出半徑,即可得到圓C的標(biāo)方程;(2)根據(jù)弦長公式可求出圓心C到直線的距離,再根據(jù)點(diǎn)到直線的距離公式結(jié)合分類討論思想即可求出【小問1詳解】設(shè)圓C的半徑為r,∵C與l相切,∴,∴圓C的標(biāo)準(zhǔn)方程為【小問2詳解】由可得圓心C到直線的距離∴當(dāng)?shù)男甭什淮嬖跁r(shí),其方程為,此時(shí)圓心到的距離為3,符合條件;當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè),圓心C到直線的距離,解得,此時(shí)的方程為,即綜上,的方程為或20、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設(shè)直線l:x=my+4,設(shè)M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關(guān)系可得,,再由OM⊥ON,可得x1x2+y1y2=0,從而可列出關(guān)于的方程,進(jìn)而可求出的值,即可得到直線的方程【詳解】(1)由條件知,解得,則故橢圓的方程為(2)顯然直線l的斜率存在,且斜率不為0,設(shè)直線l:x=my+4交橢圓C于M(x1,y1),N(x2,y2),由,當(dāng)=(24m)2-4(3m2+4)×36>0時(shí),有,,由條件OM⊥ON可得,,即x1x2+y1y2=0,從而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且滿足>0從而直線l方程為或21、(1)(2)【解析】(1)依題意得到方程組,求出、、,即可求出橢圓方程;(2)首先求出過且與軸垂直時(shí)、的坐標(biāo),即可得到,當(dāng)過的直線不與軸垂直時(shí),可設(shè),,直線方程為,聯(lián)立直線與橢圓方程,消元、列出韋達(dá)定理,根據(jù)平面向量數(shù)量積的坐標(biāo)表示得到,將韋達(dá)定理代入得到,再根據(jù)函數(shù)的性質(zhì)求出取值范圍;【小問1詳解】解:由題意可列方程組,解得,所以橢圓方程為:.【小問2詳解】解:①當(dāng)過的直線與軸垂直時(shí),此時(shí),,,則,.②當(dāng)過的直線不與軸垂直時(shí),可設(shè),,直線方程為聯(lián)立得:.所以,=將韋達(dá)定理代入上式得:.,,,由①②可知.22、(1)證明見解析(2)【解析】(1)設(shè),線段的中點(diǎn)為H,分別連接,可證,從而可得平面;(2)建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量和平面的一個(gè)法向量后可求二面角的余弦值.【小問1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論