版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆福建省泉州市德化第一中學(xué)數(shù)學(xué)高一上期末達標檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.點M(1,4)關(guān)于直線l:x-y+1=0對稱的點的坐標是()A.(4,1) B.(3,2)C.(2,3) D.(-1,6)2.弧長為3,圓心角為的扇形面積為A. B.C.2 D.3.已知,則角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限4.用斜二測畫法畫一個水平放置平面圖形的直觀圖為如圖所示的直角梯形,其中BC=AB=2,則原平面圖形的面積為()A. B.C. D.5.矩形ABCD中,AB=4,BC=3,沿AC將矩形ABCD折成一個直二面角B-AC-D,則四面體ABCD的外接球的體積是()A.12512πC.1256π6.函數(shù)y=的單調(diào)增區(qū)間為A.(-,) B.(,+)C.(-1,] D.[,4)7.函數(shù)的圖像恒過定點,則的坐標是()A. B.C. D.8.下列函數(shù)中,在區(qū)間單調(diào)遞增的是()A. B.C. D.9.設(shè)函數(shù)對的一切實數(shù)均有,則等于A.2016 B.-2016C.-2017 D.201710.下列函數(shù)中,在其定義域內(nèi)既是增函數(shù)又是奇函數(shù)的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若存在定義域為的函數(shù)滿足:對任意,,則___________.12.給出下列命題:①函數(shù)是偶函數(shù);②方程是函數(shù)的圖象的一條對稱軸方程;③在銳角中,;④函數(shù)的最小正周期為;⑤函數(shù)的對稱中心是,,其中正確命題的序號是________.13.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為________.14.已知向量,,若,則的值為________.15.已知函數(shù),是定義在區(qū)間上的奇函數(shù),則_________.16.已知P為△ABC所在平面外一點,且PA,PB,PC兩兩垂直,則下列命題:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正確命題的個數(shù)是________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在國家大力發(fā)展新能源汽車產(chǎn)業(yè)政策下,我國新能源汽車的產(chǎn)銷量高速增長.某地區(qū)年底新能源汽車保有量為輛,年底新能源汽車保有量為輛,年底新能源汽車保有量為輛(1)根據(jù)以上數(shù)據(jù),試從(,且),,(,且),三種函數(shù)模型中選擇一個最恰當(dāng)?shù)哪P蛠砜坍嬓履茉雌嚤S辛康脑鲩L趨勢(不必說明理由),設(shè)從年底起經(jīng)過年后新能源汽車保有量為輛,求出新能源汽車保有量關(guān)于的函數(shù)關(guān)系式;(2)假設(shè)每年新能源汽車保有量按(1)中求得的函數(shù)模型增長,且傳統(tǒng)能源汽車保有量每年下降的百分比相同,年底該地區(qū)傳統(tǒng)能源汽車保有量為輛,預(yù)計到年底傳統(tǒng)能源汽車保有量將下降.試估計到哪一年底新能源汽車保有量將超過傳統(tǒng)能源汽車保有量.(參考數(shù)據(jù):,)18.設(shè)函數(shù).(1)若不等式的解集為,求實數(shù)a,b的值;(2)若,且存在,使成立,求實數(shù)a的取值范圍.19.已知函數(shù),若,且,.(1)求與的值;(2)當(dāng)時,函數(shù)的圖象與的圖象僅有一個交點,求正實數(shù)的取值范圍.20.已知向量,.(1)若與共線且方向相反,求向量的坐標.(2)若與垂直,求向量,夾角的大小.21.計算下列各式:(1);(2)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】設(shè)出關(guān)于直線對稱點的坐標,利用中點和斜率的關(guān)系列方程組,解方程組求得對稱點的坐標.【詳解】設(shè)關(guān)于直線對稱點的坐標為,線段的中點坐標為,且在直線上,即①.由于直線的斜率為,所以線段的斜率為②.解由①②組成的方程組得,即關(guān)于直線對稱點的坐標為.故選:B【點睛】本小題主要考查點關(guān)于直線的對稱點的坐標的求法,考查方程的思想,屬于基礎(chǔ)題.2、B【解析】弧長為3,圓心角為,故答案為B3、A【解析】根據(jù)題意,由于,則說明正弦值和余弦值都是正數(shù),因此可知角所在的象限是第一象限,故選A.考點:三角函數(shù)的定義點評:主要是考查了三角函數(shù)的定義的運用,屬于基礎(chǔ)題4、C【解析】先求出直觀圖中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原圖形是一個直角梯形和各個邊長及高,直接求面積即可.【詳解】直觀圖中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原來的平面圖形上底長為2,下底為4,高為的直角梯形,∴該平面圖形面積為.故選:C5、C【解析】由矩形的對角線互相平分且相等即球心到四個頂點的距離相等推出球心為AC的中點,即可求出球的半徑,代入體積公式即可得解.【詳解】因為矩形對角線互相平分且相等,根據(jù)外接球性質(zhì)易知外接球球心到四個頂點的距離相等,所以球心在對角線AC上,且球的半徑為AC長度的一半,即r=12AC=故選:C【點睛】本題考查球與幾何體的切、接問題,二面角的概念,屬于基礎(chǔ)題.6、C【解析】令,,()在為增函數(shù),在上是增函數(shù),在上是減函數(shù);根據(jù)復(fù)合函數(shù)單調(diào)性判斷方法“同增異減”可知,函數(shù)y=的單調(diào)增區(qū)間為選C.【點睛】有關(guān)復(fù)合函數(shù)的單調(diào)性要求根據(jù)“同增異減”的法則去判斷,但在研究函數(shù)的單調(diào)性時,務(wù)必要注意函數(shù)的定義域,特別是含參數(shù)的函數(shù)單調(diào)性問題,注意對參數(shù)進行討論,指、對數(shù)問題針對底數(shù)a討論兩種情況,分0<a<1和a>1兩種情況,既要保證函數(shù)的單調(diào)性,又要保證真數(shù)大于零.7、D【解析】利用指數(shù)函數(shù)的性質(zhì)即可得出結(jié)果.【詳解】由指數(shù)函數(shù)恒過定點,所以函數(shù)的圖像恒過定點.故選:D8、B【解析】根據(jù)單調(diào)性依次判斷選項即可得到答案.【詳解】對選項A,區(qū)間有增有減,故A錯誤,對選項B,,令,,則,因為,在為增函數(shù),在為增函數(shù),所以在為增函數(shù),故B正確.對選項C,,,解得,所以,為減函數(shù),,為增函數(shù),故C錯誤.對選項D,在為減函數(shù),故D錯誤.故選:B9、B【解析】將換成再構(gòu)造一個等式,然后消去,得到的解析式,最后可求得【詳解】①②①②得,故選:【點睛】本題考查求解析式的一種特殊方法:方程組法.如已知,求,則由已知得,把和作為未知數(shù),列出方程組可解出.如已知也可以用這種方法求解析式10、D【解析】在定義域每個區(qū)間上為減函數(shù),排除.是非奇非偶函數(shù),排除.故選.二、填空題:本大題共6小題,每小題5分,共30分。11、-2【解析】由已知可得為偶函數(shù),即,令,由,可得,計算即可得解.【詳解】對任意,,將函數(shù)向左平移2個單位得到,函數(shù)為偶函數(shù),所以,令,由,可得,解得:.故答案為:.12、①②③【解析】由誘導(dǎo)公式化簡得函數(shù),判斷①正確;求出函數(shù)的圖象的對稱軸(),當(dāng)時,,判斷②正確;在銳角中,由化簡得到,判斷③正確;直接求出函數(shù)的最小正周期為,判斷④錯誤;直接求出函數(shù)的對稱中心是,判斷⑤錯誤.【詳解】①因為函數(shù),所以函數(shù)是偶函數(shù),故①正確;②因為函數(shù),所以函數(shù)圖象的對稱軸(),即(),當(dāng)時,,故②正確;③在銳角中,,即,所以,故③正確;④函數(shù)的最小正周期為,故④錯誤;⑤令,解得,所以函數(shù)的對稱中心是,故⑤錯誤.故答案為:①②③【點睛】本題考查三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式與三角恒等變換,是中檔題.13、【解析】根據(jù)三角函數(shù)的圖象,求出函數(shù)的周期,進而求出和即可得到結(jié)論【詳解】由圖象得,,則周期,則,則,當(dāng)時,,則,即即,即,,,當(dāng)時,,則函數(shù)的解析式為,故答案為【點睛】本題主要考查三角函數(shù)解析式的求解,根據(jù)三角函數(shù)圖象求出,和的值是解決本題的關(guān)鍵14、【解析】因為,,,所以,解得,故答案為:15、27【解析】由于奇函數(shù)的定義域必然關(guān)于原點對稱,可得m的值,再求【詳解】由于奇函數(shù)的定義域必然關(guān)于原點對稱∴m=3,故f(m)=故答案為27【點睛】本題主要考查函數(shù)的奇偶性,利用了奇函數(shù)的定義域必然關(guān)于原點對稱,屬于基礎(chǔ)題16、3【解析】如圖所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC?平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案為:3.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)應(yīng)選擇的函數(shù)模型是(,且),函數(shù)關(guān)系式為;(2)年底.【解析】(1)根據(jù)題中的數(shù)據(jù)可得出所選的函數(shù)模型,然后將對應(yīng)點的坐標代入函數(shù)解析式,求出參數(shù)的值,即可得出函數(shù)解析式;(2)設(shè)傳統(tǒng)能源汽車保有量每年下降的百分比為,根據(jù)題意求出的值,可得出設(shè)從年底起經(jīng)過年后的傳統(tǒng)能源汽車保有量關(guān)于的函數(shù)關(guān)系式,根據(jù)題意得出關(guān)于的不等式,解之即可.【小問1詳解】解:根據(jù)該地區(qū)新能源汽車保有量的增長趨勢知,應(yīng)選擇的函數(shù)模型是(,且),由題意得,解得,所以.【小問2詳解】解:設(shè)傳統(tǒng)能源汽車保有量每年下降的百分比為,依題意得,,解得,設(shè)從年底起經(jīng)過年后的傳統(tǒng)能源汽車保有量為輛,則有,設(shè)從年底起經(jīng)過年后新能源汽車的數(shù)量將超過傳統(tǒng)能源汽車,則有化簡得,所以,解得,故從年底起經(jīng)過年后,即年底新能源汽車的數(shù)量將超過傳統(tǒng)能源汽車.18、(1);(2)或.【解析】(1)根據(jù)的解集為,利用根與系數(shù)的關(guān)系求解;(2)根據(jù),得到,再由存在,成立,分,,,利用判別式法求解.【小問1詳解】解:因為的解集為,所以,解得;【小問2詳解】(2)因為,所以,因為存在,成立,即存在,成立,當(dāng)時,,成立;當(dāng)時,函數(shù)圖象開口向下,成立;當(dāng)時,,即,解得或,此時,或,綜上:實數(shù)a的取值范圍或.19、(1),.(2).【解析】(1)由,可得,結(jié)合,得,,則,;(2),,,分三種情況討論,時,時,結(jié)合二次函數(shù)對稱軸與單調(diào)性,以及對數(shù)函數(shù)的單調(diào)性,可篩選出符合題意的正實數(shù)的取值范圍.試題解析:(1)設(shè),則,因為,因為,得,,則,.(2)由題可知,,.當(dāng)時,,在上單調(diào)遞減,且,單調(diào)遞增,且,此時兩個圖象僅有一個交點.當(dāng)時,,在上單調(diào)遞減,在上單調(diào)遞增,因為兩個圖象
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GB-T 26831.6-2015社區(qū)能源計量抄收系統(tǒng)規(guī)范 第6部分:本地總線》專題研究報告
- 《GB-T 39970-2021汽車輪胎慣性滑行通過噪聲限值和等級》專題研究報告
- 《GB-T 39655.2-2020造船 船用螺旋槳 制造公差 第2部分:直徑在0.8m至2.5m的螺旋槳》專題研究報告
- 2026年石家莊幼兒師范高等??茖W(xué)校單招職業(yè)適應(yīng)性考試題庫及完整答案詳解1套
- 智能家電安裝調(diào)試師崗位招聘考試試卷及答案
- 2025年道路運輸企業(yè)主要負責(zé)人考試筆試試題附答案
- 2025年中高壓變量葉片泵項目建議書
- 女性骨骼健康的飲食
- 遼寧省2025秋九年級英語全冊Unit5Whataretheshirtsmadeof課時3SectionA(GrammarFocus-4c)課件新版人教新目標版
- 2025年地質(zhì)勘察及探礦核儀器項目發(fā)展計劃
- 2025年軍隊專業(yè)技能崗位文職人員招聘考試(電工)歷年參考題庫含答案詳解(5卷)
- JJG 688-2025汽車排放氣體測試儀檢定規(guī)程
- 濟南醫(yī)院節(jié)能管理辦法
- 2025至2030中國救生衣和救生衣行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 綠化養(yǎng)護物資管理制度
- 護理事業(yè)十五五發(fā)展規(guī)劃(2026-2030)
- 2025廣西專業(yè)技術(shù)人員公需科目培訓(xùn)考試答案
- 網(wǎng)絡(luò)故障模擬與處理能力測試試題及答案
- 2025至2030中國聚四氟乙烯(PTFE)行業(yè)經(jīng)營狀況及投融資動態(tài)研究報告
- 教育、科技、人才一體化發(fā)展
- 營銷與客戶關(guān)系管理-深度研究
評論
0/150
提交評論