(完整版)同濟(jì)大學(xué)-高數(shù)上冊(cè)知識(shí)點(diǎn)_第1頁
(完整版)同濟(jì)大學(xué)-高數(shù)上冊(cè)知識(shí)點(diǎn)_第2頁
(完整版)同濟(jì)大學(xué)-高數(shù)上冊(cè)知識(shí)點(diǎn)_第3頁
(完整版)同濟(jì)大學(xué)-高數(shù)上冊(cè)知識(shí)點(diǎn)_第4頁
(完整版)同濟(jì)大學(xué)-高數(shù)上冊(cè)知識(shí)點(diǎn)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

(完整版)同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)一、函數(shù)與極限函數(shù)函數(shù)是從一個(gè)非空數(shù)集到另一個(gè)非空數(shù)集的映射。設(shè)數(shù)集\(D\subsetR\),則稱映射\(f:D\rightarrowR\)為定義在\(D\)上的函數(shù),通常記為\(y=f(x),x\inD\),其中\(zhòng)(x\)稱為自變量,\(y\)稱為因變量,\(D\)稱為定義域。函數(shù)有多種表示方法,如解析法(公式法)、列表法和圖像法。常見的函數(shù)類型包括:基本初等函數(shù):冪函數(shù)\(y=x^{\mu}\)(\(\mu\)為常數(shù))、指數(shù)函數(shù)\(y=a^{x}(a>0,a\neq1)\)、對(duì)數(shù)函數(shù)\(y=\log_{a}x(a>0,a\neq1)\)、三角函數(shù)(如\(y=\sinx,y=\cosx,y=\tanx\)等)和反三角函數(shù)(如\(y=\arcsinx,y=\arccosx,y=\arctanx\)等)。復(fù)合函數(shù):設(shè)\(y=f(u)\)的定義域?yàn)閈(D_{f}\),\(u=g(x)\)的值域?yàn)閈(R_{g}\),當(dāng)\(R_{g}\capD_{f}\neq\varnothing\)時(shí),稱\(y=f[g(x)]\)為\(x\)的復(fù)合函數(shù),其中\(zhòng)(u\)為中間變量。分段函數(shù):在定義域的不同部分用不同的解析式表示的函數(shù),例如絕對(duì)值函數(shù)\(y=\vertx\vert=\begin{cases}x,x\geq0\\x,x<0\end{cases}\)。函數(shù)的性質(zhì)包括:有界性:設(shè)函數(shù)\(f(x)\)的定義域?yàn)閈(D\),數(shù)集\(X\subsetD\),若存在正數(shù)\(M\),使得對(duì)一切\(zhòng)(x\inX\),都有\(zhòng)(\vertf(x)\vert\leqM\),則稱函數(shù)\(f(x)\)在\(X\)上有界;若這樣的\(M\)不存在,則稱\(f(x)\)在\(X\)上無界。單調(diào)性:設(shè)函數(shù)\(f(x)\)的定義域?yàn)閈(D\),區(qū)間\(I\subsetD\),如果對(duì)于區(qū)間\(I\)上任意兩點(diǎn)\(x_{1}\)及\(x_{2}\),當(dāng)\(x_{1}<x_{2}\)時(shí),恒有\(zhòng)(f(x_{1})<f(x_{2})\),則稱函數(shù)\(f(x)\)在區(qū)間\(I\)上是單調(diào)增加的;若恒有\(zhòng)(f(x_{1})>f(x_{2})\),則稱函數(shù)\(f(x)\)在區(qū)間\(I\)上是單調(diào)減少的。奇偶性:設(shè)函數(shù)\(f(x)\)的定義域\(D\)關(guān)于原點(diǎn)對(duì)稱,如果對(duì)于任一\(x\inD\),\(f(x)=f(x)\)恒成立,則稱\(f(x)\)為偶函數(shù);如果對(duì)于任一\(x\inD\),\(f(x)=f(x)\)恒成立,則稱\(f(x)\)為奇函數(shù)。周期性:設(shè)函數(shù)\(f(x)\)的定義域?yàn)閈(D\),如果存在一個(gè)正數(shù)\(T\),使得對(duì)于任一\(x\inD\)有\(zhòng)((x\pmT)\inD\),且\(f(x+T)=f(x)\)恒成立,則稱\(f(x)\)為周期函數(shù),\(T\)稱為\(f(x)\)的周期,通常所說的周期是指最小正周期。極限數(shù)列極限:設(shè)\(\{x_{n}\}\)為一數(shù)列,如果存在常數(shù)\(a\),對(duì)于任意給定的正數(shù)\(\varepsilon\)(不論它多么?。偞嬖谡麛?shù)\(N\),使得當(dāng)\(n>N\)時(shí),不等式\(\vertx_{n}a\vert<\varepsilon\)都成立,那么就稱常數(shù)\(a\)是數(shù)列\(zhòng)(\{x_{n}\}\)的極限,或者稱數(shù)列\(zhòng)(\{x_{n}\}\)收斂于\(a\),記為\(\lim_{n\rightarrow\infty}x_{n}=a\)或\(x_{n}\rightarrowa(n\rightarrow\infty)\)。如果不存在這樣的常數(shù)\(a\),則稱數(shù)列\(zhòng)(\{x_{n}\}\)沒有極限,或者說數(shù)列\(zhòng)(\{x_{n}\}\)是發(fā)散的。函數(shù)極限:當(dāng)\(x\rightarrowx_{0}\)時(shí)函數(shù)的極限:設(shè)函數(shù)\(f(x)\)在點(diǎn)\(x_{0}\)的某去心鄰域內(nèi)有定義,如果存在常數(shù)\(A\),對(duì)于任意給定的正數(shù)\(\varepsilon\)(不論它多么小),總存在正數(shù)\(\delta\),使得當(dāng)\(x\)滿足不等式\(0<\vertxx_{0}\vert<\delta\)時(shí),對(duì)應(yīng)的函數(shù)值\(f(x)\)都滿足不等式\(\vertf(x)A\vert<\varepsilon\),那么常數(shù)\(A\)就叫做函數(shù)\(f(x)\)當(dāng)\(x\rightarrowx_{0}\)時(shí)的極限,記為\(\lim_{x\rightarrowx_{0}}f(x)=A\)。左極限和右極限:左極限\(\lim_{x\rightarrowx_{0}^{}}f(x)=A\)表示當(dāng)\(x\)從\(x_{0}\)的左側(cè)趨近于\(x_{0}\)時(shí)\(f(x)\)的極限;右極限\(\lim_{x\rightarrowx_{0}^{+}}f(x)=A\)表示當(dāng)\(x\)從\(x_{0}\)的右側(cè)趨近于\(x_{0}\)時(shí)\(f(x)\)的極限。\(\lim_{x\rightarrowx_{0}}f(x)=A\)的充要條件是\(\lim_{x\rightarrowx_{0}^{}}f(x)=\lim_{x\rightarrowx_{0}^{+}}f(x)=A\)。當(dāng)\(x\rightarrow\infty\)時(shí)函數(shù)的極限:設(shè)函數(shù)\(f(x)\)當(dāng)\(\vertx\vert\)大于某一正數(shù)時(shí)有定義,如果存在常數(shù)\(A\),對(duì)于任意給定的正數(shù)\(\varepsilon\)(不論它多么?。?,總存在著正數(shù)\(X\),使得當(dāng)\(x\)滿足不等式\(\vertx\vert>X\)時(shí),對(duì)應(yīng)的函數(shù)值\(f(x)\)都滿足不等式\(\vertf(x)A\vert<\varepsilon\),那么常數(shù)\(A\)就叫做函數(shù)\(f(x)\)當(dāng)\(x\rightarrow\infty\)時(shí)的極限,記為\(\lim_{x\rightarrow\infty}f(x)=A\)。極限的性質(zhì):唯一性:如果數(shù)列\(zhòng)(\{x_{n}\}\)收斂,那么它的極限唯一;如果\(\lim_{x\rightarrowx_{0}}f(x)\)存在,那么這個(gè)極限是唯一的。有界性:收斂的數(shù)列一定有界;如果\(\lim_{x\rightarrowx_{0}}f(x)=A\),那么存在常數(shù)\(M>0\)和\(\delta>0\),使得當(dāng)\(0<\vertxx_{0}\vert<\delta\)時(shí),有\(zhòng)(\vertf(x)\vert\leqM\)。保號(hào)性:如果\(\lim_{x\rightarrowx_{0}}f(x)=A\),且\(A>0\)(或\(A<0\)),那么存在常數(shù)\(\delta>0\),使得當(dāng)\(0<\vertxx_{0}\vert<\delta\)時(shí),有\(zhòng)(f(x)>0\)(或\(f(x)<0\));反之,如果在\(x_{0}\)的某去心鄰域內(nèi)\(f(x)\geq0\)(或\(f(x)\leq0\)),且\(\lim_{x\rightarrowx_{0}}f(x)=A\),那么\(A\geq0\)(或\(A\leq0\))。極限的運(yùn)算法則:設(shè)\(\limf(x)=A\),\(\limg(x)=B\),則\(\lim[f(x)\pmg(x)]=\limf(x)\pm\limg(x)=A\pmB\);\(\lim[f(x)\cdotg(x)]=\limf(x)\cdot\limg(x)=A\cdotB\);若\(B\neq0\),則\(\lim\frac{f(x)}{g(x)}=\frac{\limf(x)}{\limg(x)}=\frac{A}{B}\)。復(fù)合函數(shù)的極限運(yùn)算法則:設(shè)函數(shù)\(y=f[g(x)]\)是由函數(shù)\(u=g(x)\)與函數(shù)\(y=f(u)\)復(fù)合而成,\(f[g(x)]\)在點(diǎn)\(x_{0}\)的某去心鄰域內(nèi)有定義,若\(\lim_{x\rightarrowx_{0}}g(x)=u_{0}\),\(\lim_{u\rightarrowu_{0}}f(u)=A\),且存在\(\delta_{0}>0\),當(dāng)\(x\in\mathring{U}(x_{0},\delta_{0})\)時(shí),有\(zhòng)(g(x)\nequ_{0}\),則\(\lim_{x\rightarrowx_{0}}f[g(x)]=\lim_{u\rightarrowu_{0}}f(u)=A\)。兩個(gè)重要極限:\(\lim_{x\rightarrow0}\frac{\sinx}{x}=1\),可用于計(jì)算一些與三角函數(shù)相關(guān)的極限,例如\(\lim_{x\rightarrow0}\frac{\sinax}{bx}=\frac{a}(b\neq0)\)。\(\lim_{x\rightarrow\infty}(1+\frac{1}{x})^{x}=e\)或\(\lim_{t\rightarrow0}(1+t)^{\frac{1}{t}}=e\),常用于處理冪指函數(shù)的極限,例如\(\lim_{x\rightarrow\infty}(1+\frac{k}{x})^{x}=e^{k}\)。無窮小與無窮大:無窮?。喝绻瘮?shù)\(f(x)\)當(dāng)\(x\rightarrowx_{0}\)(或\(x\rightarrow\infty\))時(shí)的極限為零,那么稱函數(shù)\(f(x)\)為當(dāng)\(x\rightarrowx_{0}\)(或\(x\rightarrow\infty\))時(shí)的無窮小。有限個(gè)無窮小的和、積仍是無窮??;有界函數(shù)與無窮小的乘積是無窮小。無窮大:如果當(dāng)\(x\rightarrowx_{0}\)(或\(x\rightarrow\infty\))時(shí),對(duì)應(yīng)的函數(shù)值的絕對(duì)值\(\vertf(x)\vert\)無限增大,就稱函數(shù)\(f(x)\)為當(dāng)\(x\rightarrowx_{0}\)(或\(x\rightarrow\infty\))時(shí)的無窮大,記為\(\lim_{x\rightarrowx_{0}}f(x)=\infty\)或\(\lim_{x\rightarrow\infty}f(x)=\infty\)。無窮大與無窮小互為倒數(shù)關(guān)系(在相應(yīng)的變化過程中)。無窮小的比較:設(shè)\(\alpha\)和\(\beta\)都是在同一個(gè)自變量變化過程中的無窮小,且\(\alpha\neq0\),\(\lim\frac{\beta}{\alpha}=C\):若\(C=0\),則稱\(\beta\)是比\(\alpha\)高階的無窮小,記為\(\beta=o(\alpha)\);若\(C\neq0\),則稱\(\beta\)與\(\alpha\)是同階無窮小;若\(C=1\),則稱\(\beta\)與\(\alpha\)是等價(jià)無窮小,記為\(\beta\sim\alpha\)。常見的等價(jià)無窮?。寒?dāng)\(x\rightarrow0\)時(shí),\(\sinx\simx\),\(\tanx\simx\),\(\arcsinx\simx\),\(\arctanx\simx\),\(1\cosx\sim\frac{1}{2}x^{2}\),\(e^{x}1\simx\),\(\ln(1+x)\simx\)等,在求極限時(shí)可利用等價(jià)無窮小替換簡(jiǎn)化計(jì)算。二、導(dǎo)數(shù)與微分導(dǎo)數(shù)導(dǎo)數(shù)的定義:設(shè)函數(shù)\(y=f(x)\)在點(diǎn)\(x_{0}\)的某個(gè)鄰域內(nèi)有定義,當(dāng)自變量\(x\)在\(x_{0}\)處取得增量\(\Deltax\)(點(diǎn)\(x_{0}+\Deltax\)仍在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)\(y\)取得增量\(\Deltay=f(x_{0}+\Deltax)f(x_{0})\);如果\(\Deltay\)與\(\Deltax\)之比當(dāng)\(\Deltax\rightarrow0\)時(shí)的極限存在,則稱函數(shù)\(y=f(x)\)在點(diǎn)\(x_{0}\)處可導(dǎo),并稱這個(gè)極限為函數(shù)\(y=f(x)\)在點(diǎn)\(x_{0}\)處的導(dǎo)數(shù),記為\(f^{\prime}(x_{0})\),即\(f^{\prime}(x_{0})=\lim_{\Deltax\rightarrow0}\frac{\Deltay}{\Deltax}=\lim_{\Deltax\rightarrow0}\frac{f(x_{0}+\Deltax)f(x_{0})}{\Deltax}\),也可記為\(y^{\prime}\vert_{x=x_{0}}\),\(\frac{dy}{dx}\vert_{x=x_{0}}\)或\(\fracj444k3m{dx}f(x)\vert_{x=x_{0}}\)。單側(cè)導(dǎo)數(shù):左導(dǎo)數(shù)\(f_{}^{\prime}(x_{0})=\lim_{\Deltax\rightarrow0^{}}\frac{f(x_{0}+\Deltax)f(x_{0})}{\Deltax}\),右導(dǎo)數(shù)\(f_{+}^{\prime}(x_{0})=\lim_{\Deltax\rightarrow0^{+}}\frac{f(x_{0}+\Deltax)f(x_{0})}{\Deltax}\)。函數(shù)\(y=f(x)\)在點(diǎn)\(x_{0}\)處可導(dǎo)的充要條件是左導(dǎo)數(shù)\(f_{}^{\prime}(x_{0})\)和右導(dǎo)數(shù)\(f_{+}^{\prime}(x_{0})\)都存在且相等。如果函數(shù)\(y=f(x)\)在開區(qū)間\(I\)內(nèi)的每點(diǎn)處都可導(dǎo),就稱函數(shù)\(f(x)\)在開區(qū)間\(I\)內(nèi)可導(dǎo),此時(shí)對(duì)于任一\(x\inI\),都對(duì)應(yīng)著\(f(x)\)的一個(gè)確定的導(dǎo)數(shù)值,這樣就構(gòu)成了一個(gè)新的函數(shù),這個(gè)函數(shù)叫做原來函數(shù)\(y=f(x)\)的導(dǎo)函數(shù),記為\(y^{\prime}\),\(f^{\prime}(x)\),\(\frac{dy}{dx}\)或\(\fraczv3vf6r{dx}f(x)\),即\(f^{\prime}(x)=\lim_{\Deltax\rightarrow0}\frac{f(x+\Deltax)f(x)}{\Deltax}\)。導(dǎo)數(shù)的幾何意義:函數(shù)\(y=f(x)\)在點(diǎn)\(x_{0}\)處的導(dǎo)數(shù)\(f^{\prime}(x_{0})\)在幾何上表示曲線\(y=f(x)\)在點(diǎn)\((x_{0},f(x_{0}))\)處的切線斜率。曲線\(y=f(x)\)在點(diǎn)\((x_{0},f(x_{0}))\)處的切線方程為\(yf(x_{0})=f^{\prime}(x_{0})(xx_{0})\);法線方程為\(yf(x_{0})=\frac{1}{f^{\prime}(x_{0})}(xx_{0})\)(當(dāng)\(f^{\prime}(x_{0})\neq0\)時(shí))。函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系:如果函數(shù)\(y=f(x)\)在點(diǎn)\(x\)處可導(dǎo),那么函數(shù)在該點(diǎn)必連續(xù);但函數(shù)在某點(diǎn)連續(xù)卻不一定在該點(diǎn)可導(dǎo),例如\(y=\vertx\vert\)在\(x=0\)處連續(xù),但不可導(dǎo)。導(dǎo)數(shù)的運(yùn)算法則:四則運(yùn)算法則:設(shè)\(u=u(x)\),\(v=v(x)\)都可導(dǎo),則\((u\pmv)^{\prime}=u^{\prime}\pmv^{\prime}\);\((uv)^{\prime}=u^{\prime}v+uv^{\prime}\);\((\frac{u}{v})^{\prime}=\frac{u^{\prime}vuv^{\prime}}{v^{2}}(v\neq0)\)。復(fù)合函數(shù)求導(dǎo)法則:設(shè)\(y=f(u)\),\(u=g(x)\),且\(f(u)\)和\(g(x)\)都可導(dǎo),則復(fù)合函數(shù)\(y=f[g(x)]\)的導(dǎo)數(shù)為\(\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}=f^{\prime}(u)\cdotg^{\prime}(x)\)。反函數(shù)求導(dǎo)法則:設(shè)函數(shù)\(x=\varphi(y)\)在區(qū)間\(I_{y}\)內(nèi)單調(diào)、可導(dǎo)且\(\varphi^{\prime}(y)\neq0\),則它的反函數(shù)\(y=f(x)\)在對(duì)應(yīng)區(qū)間\(I_{x}=\{x\vertx=\varphi(y),y\inI_{y}\}\)內(nèi)也可導(dǎo),且\(f^{\prime}(x)=\frac{1}{\varphi^{\prime}(y)}\)。基本初等函數(shù)的導(dǎo)數(shù)公式:\((C)^{\prime}=0\)(\(C\)為常數(shù));\((x^{\mu})^{\prime}=\mux^{\mu1}\);\((\sinx)^{\prime}=\cosx\),\((\cosx)^{\prime}=\sinx\),\((\tanx)^{\prime}=\sec^{2}x\),\((\cotx)^{\prime}=\csc^{2}x\),\((\secx)^{\prime}=\secx\tanx\),\((\cscx)^{\prime}=\cscx\cotx\);\((a^{x})^{\prime}=a^{x}\lna\),\((e^{x})^{\prime}=e^{x}\);\((\log_{a}x)^{\prime}=\frac{1}{x\lna}\),\((\lnx)^{\prime}=\frac{1}{x}\);\((\arcsinx)^{\prime}=\frac{1}{\sqrt{1x^{2}}}\),\((\arccosx)^{\prime}=\frac{1}{\sqrt{1x^{2}}}\),\((\arctanx)^{\prime}=\frac{1}{1+x^{2}}\),\((\text{arccot}x)^{\prime}=\frac{1}{1+x^{2}}\)。高階導(dǎo)數(shù):函數(shù)\(y=f(x)\)的導(dǎo)數(shù)\(y^{\prime}=f^{\prime}(x)\)仍然是\(x\)的函數(shù),如果\(y^{\prime}=f^{\prime}(x)\)仍然可導(dǎo),那么把\(y^{\prime}=f^{\prime}(x)\)的導(dǎo)數(shù)叫做函數(shù)\(y=f(x)\)的二階導(dǎo)數(shù),記為\(y^{\prime\prime}\),\(f^{\prime\prime}(x)\),\(\frac{d^{2}y}{dx^{2}}\)或\(\frac{d^{2}}{dx^{2}}f(x)\)。一般地,函數(shù)\(y=f(x)\)的\(n\)階導(dǎo)數(shù)是\(y^{(n1)}=f^{(n1)}(x)\)的導(dǎo)數(shù),記為\(y^{(n)}\),\(f^{(n)}(x)\),\(\frac{d^{n}y}{dx^{n}}\)或\(\frac{d^{n}}{dx^{n}}f(x)\)。一些常見函數(shù)的\(n\)階導(dǎo)數(shù)公式:\((e^{x})^{(n)}=e^{x}\),\((\sinx)^{(n)}=\sin(x+\frac{n\pi}{2})\),\((\cosx)^{(n)}=\cos(x+\frac{n\pi}{2})\),\((x^{\mu})^{(n)}=\mu(\mu1)\cdots(\mun+1)x^{\mun}\)(\(\mu\inR\)),\((\ln(1+x))^{(n)}=(1)^{n1}\frac{(n1)!}{(1+x)^{n}}\)。微分微分的定義:設(shè)函數(shù)\(y=f(x)\)在某區(qū)間內(nèi)有定義,\(x_{0}\)及\(x_{0}+\Deltax\)在這區(qū)間內(nèi),如果函數(shù)的增量\(\Deltay=f(x_{0}+\Deltax)f(x_{0})\)可表示為\(\Deltay=A\Deltax+o(\Deltax)\),其中\(zhòng)(A\)是不依賴于\(\Deltax\)的常數(shù),那么稱函數(shù)\(y=f(x)\)在點(diǎn)\(x_{0}\)是可微的,而\(A\Deltax\)叫做函數(shù)\(y=f(x)\)在點(diǎn)\(x_{0}\)相應(yīng)于自變量增量\(\Deltax\)的微分,記為\(dy\),即\(dy=A\Deltax\)。函數(shù)\(y=f(x)\)在點(diǎn)\(x\)可微的充要條件是函數(shù)\(y=f(x)\)在點(diǎn)\(x\)可導(dǎo),且\(dy=f^{\prime}(x)dx\)(其中\(zhòng)(dx=\Deltax\))。微分的幾何意義:微分\(dy=f^{\prime}(x_{0})\Deltax\)表示當(dāng)自變量\(x\)有增量\(\Deltax\)時(shí),曲線\(y=f(x)\)在點(diǎn)\((x_{0},f(x_{0}))\)處的切線縱坐標(biāo)的增量。微分的運(yùn)算法則:四則運(yùn)算法則:\(d(u\pmv)=du\pmdv\);\(d(uv)=vdu+udv\);\(d(\frac{u}{v})=\frac{vduudv}{v^{2}}(v\neq0)\)。復(fù)合函數(shù)的微分法則:設(shè)\(y=f(u)\),\(u=g(x)\),則復(fù)合函數(shù)\(y=f[g(x)]\)的微分為\(dy=f^{\prime}(u)du=f^{\prime}[g(x)]g^{\prime}(x)dx\),這也體現(xiàn)了一階微分形式的不變性,即無論\(u\)是自變量還是中間變量,\(dy=f^{\prime}(u)du\)都成立。利用微分進(jìn)行近似計(jì)算:當(dāng)\(\vert\Deltax\vert\)很小時(shí),\(\Deltay\approxdy\),即\(f(x_{0}+\Deltax)f(x_{0})\approxf^{\prime}(x_{0})\Deltax\),從而\(f(x_{0}+\Deltax)\approxf(x_{0})+f^{\prime}(x_{0})\Deltax\)。例如,當(dāng)\(\vertx\vert\)很小時(shí),\(e^{x}\approx1+x\),\(\sinx\approxx\),\(\sqrt[n]{1+x}\approx1+\frac{1}{n}x\)等。三、中值定理與導(dǎo)數(shù)的應(yīng)用中值定理羅爾(Rolle)定理:如果函數(shù)\(y=f(x)\)滿足:(1)在閉區(qū)間\([a,b]\)上連續(xù);(2)在開區(qū)間\((a,b)\)內(nèi)可導(dǎo);(3)在區(qū)間端點(diǎn)處的函數(shù)值相等,即\(f(a)=f(b)\),那么在\((a,b)\)內(nèi)至少有一點(diǎn)\(\xi(a<\xi<b)\),使得\(f^{\prime}(\xi)=0\)。拉格朗日(Lagrange)中值定理:如果函數(shù)\(y=f(x)\)滿足:(1)在閉區(qū)間\([a,b]\)上連續(xù);(2)在開區(qū)間\((a,b)\)內(nèi)可導(dǎo),那么在\((a,b)\)內(nèi)至少有一點(diǎn)\(\xi(a<\xi<b)\),使等式\(f(b)f(a)=f^{\prime}(\xi)(ba)\)成立。其另一種形式為\(f(x_{2})f(x_{1})=f^{\prime}(\xi)(x_{2}x_{1})\)(\(\xi\)介于\(x_{1}\)與\(x_{2}\)之間),還可寫成\(f(x+\Deltax)f(x)=f^{\prime}(x+\theta\Deltax)\Deltax\)(\(0<\theta<1\))。拉格朗日中值定理的一個(gè)重要推論是:如果函數(shù)\(f(x)\)在區(qū)間\(I\)上的導(dǎo)數(shù)恒為零,那么\(f(x)\)在區(qū)間\(I\)上是一個(gè)常數(shù)??挛鳎–auchy)中值定理:如果函數(shù)\(f(x)\)及\(F(x)\)滿足:(1)在閉區(qū)間\([a,b]\)上連續(xù);(2)在開區(qū)間\((a,b)\)內(nèi)可導(dǎo);(3)對(duì)任一\(x\in(a,b)\),\(F^{\prime}(x)\neq0\),那么在\((a,b)\)內(nèi)至少有一點(diǎn)\(\xi\),使等式\(\frac{f(b)f(a)}{F(b)F(a)}=\frac{f^{\prime}(\xi)}{F^{\prime}(\xi)}\)成立。洛必達(dá)(L'Hospital)法則對(duì)于\(\frac{0}{0}\)型或\(\frac{\infty}{\infty}\)型的未定式極限,如果函數(shù)\(f(x)\)和\(F(x)\)滿足:(1)\(\lim_{x\rightarrowa}f(x)=0\)(或\(\lim_{x\rightarrowa}f(x)=\infty\)),\(\lim_{x\rightarrowa}F(x)=0\)(或\(\lim_{x\rightarrowa}F(x)=\infty\));(2)在點(diǎn)\(a\)的某去心鄰域內(nèi),\(f^{\prime}(x)\)及\(F^{\prime}(x)\)都存在且\(F^{\prime}(x)\neq0\);(3)\(\lim_{x\rightarrowa}\frac{f^{\prime}(x)}{F^{\prime}(x)}\)存在(或?yàn)闊o窮大),那么\(\lim_{x\righta

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論