運(yùn)籌學(xué) 第3版 課件 04 線性規(guī)劃靈敏度分析_第1頁(yè)
運(yùn)籌學(xué) 第3版 課件 04 線性規(guī)劃靈敏度分析_第2頁(yè)
運(yùn)籌學(xué) 第3版 課件 04 線性規(guī)劃靈敏度分析_第3頁(yè)
運(yùn)籌學(xué) 第3版 課件 04 線性規(guī)劃靈敏度分析_第4頁(yè)
運(yùn)籌學(xué) 第3版 課件 04 線性規(guī)劃靈敏度分析_第5頁(yè)
已閱讀5頁(yè),還剩37頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第4章線性規(guī)劃靈敏度分析問題提出前面假定cj,aij,bi是常數(shù),實(shí)際上,cj(市場(chǎng)價(jià)格決定),aij(工藝條件決定),bi(根據(jù)經(jīng)濟(jì)效果決定,市場(chǎng)與影子價(jià)格),這些變量都會(huì)隨著市場(chǎng)、工藝等條件的改變而改變。1、當(dāng)這些參數(shù)一個(gè)或幾個(gè)發(fā)生變化時(shí),問題的最優(yōu)解或最優(yōu)基如何變化;

2、參數(shù)在什么范圍內(nèi)變化時(shí),問題的最優(yōu)解或最優(yōu)基不變。

針對(duì)以上現(xiàn)象討論兩個(gè)問題:

重新求解?CBCN0b表頭CBXBXNXSBNIb初始表…………CBIB-1NB-1B-1b最優(yōu)表CB-CBICN-CBB-1N0-CBB-1CBB-1b檢驗(yàn)數(shù)求解思路問題提出(2/2)2、b變化影響1、C(CBCN)變化影響3、A(BN)變化影響最優(yōu)解和目標(biāo)函數(shù)值檢驗(yàn)數(shù)行N

變化:主要影響非基變量檢驗(yàn)數(shù)和系數(shù)列向量B變化:系數(shù)矩陣、檢驗(yàn)數(shù)和目標(biāo)函數(shù)、最優(yōu)解主要內(nèi)容§4-2資源數(shù)量變化的分析(右端常數(shù)項(xiàng)bi的變化)§4-3技術(shù)系數(shù)aij的變化§4-1目標(biāo)函數(shù)系數(shù)的變化(

cj

的變化)§4-1目標(biāo)函數(shù)系數(shù)的變化cj的變化對(duì)檢驗(yàn)數(shù)有影響,進(jìn)而影響解的最優(yōu)性。cj對(duì)應(yīng)的變量又分為基變量、非基變量,兩者變化會(huì)對(duì)σj產(chǎn)生不同的影響。一、ck為非基變量xk的價(jià)值系數(shù)

二、cr為基變量xr的價(jià)值系數(shù)

2-11000CBXBbx1x2x3x4x5x6-1x2240151300x670020112x12110412000-2-1-10問題:x3的價(jià)值系數(shù)c3在什么范圍變化,使得最優(yōu)解不變?分析:x3非基變量c3減少:

3減少,負(fù)c3增加:

3增加,負(fù)、0、正Δc32即:c3

1+2一、ck為非基變量xk的價(jià)值系數(shù)(1/2)例4-1當(dāng)非基變量xk對(duì)應(yīng)的ck變?yōu)?/p>

時(shí),

(不同于xk的另外任一變量xj對(duì)應(yīng)的檢驗(yàn)數(shù)

不會(huì)發(fā)生變化。)

當(dāng)時(shí),最優(yōu)解不變,即:當(dāng)ck為非基變量xk的價(jià)值系數(shù)時(shí),最優(yōu)解不變的Δck的變化范圍為此時(shí)最優(yōu)解、最優(yōu)值不變。

一、ck為非基變量xk的價(jià)值系數(shù)(2/2)c2的變化范圍為:

-2-0.5×Δc2

≤0-0.25+0.125×Δc2≤0得:得:Δc2的變化范圍

34000CBXBbx1x2x3x4x53x141000.2500x5400-20.514x22010.5-0.125020000-0.5×Δc2+0.125×Δc2例4-2生產(chǎn)計(jì)劃問題:產(chǎn)品乙收益的變化范圍

甲乙資源約束原材料128設(shè)備A4016設(shè)備B0412獲利34二、cr為基變量xr的價(jià)值系數(shù)(1/2)-2-0.25當(dāng)基變量xr對(duì)應(yīng)的cr變?yōu)?/p>

任意非基變量xj有

若最優(yōu)解不變,則所有

二、cr為基變量xr的價(jià)值系數(shù)(2/2)任意變量xj的檢驗(yàn)數(shù):

(j=1,2,…,n)

負(fù)數(shù)正數(shù)

(3)Δcr的變化范圍由檢驗(yàn)數(shù)行與xr所在行的系數(shù)來(lái)確定

(1)小結(jié)34000x1x2x3x4x5341000.2500400-20.5142010.5-0.12502000-2-0.250

Δck(對(duì)應(yīng)非基變量)的變化范圍:Δcr(對(duì)應(yīng)基變量)的變化范圍:§4-2約束右端常數(shù)項(xiàng)的變化一、br發(fā)生變化,最優(yōu)解改變最優(yōu)基不變(影子價(jià)格不變)最優(yōu)基改變(影子價(jià)格改變)二、最優(yōu)基不變(影子價(jià)格不變),Δbr允許變化的范圍一、br發(fā)生變化,最優(yōu)解改變?cè)O(shè)第r種資源br發(fā)生變化△

br,則

設(shè)備A增加2,即

所以,最優(yōu)基不變,最優(yōu)解為

cj34000CBXBbx1x2x3x4x53x141000.2500x5400-20.514x22010.5-0.125000-2-0.250影子價(jià)格不變cj34000CBXBbx1x2x3x4x53x14.51000.2500x5500-20.514x21.75010.5-0.125000-2-0.250一、br發(fā)生變化——最優(yōu)基不變例4-3生產(chǎn)計(jì)劃問題,用到原材料、設(shè)備A、設(shè)備B三項(xiàng)資源例4-4生產(chǎn)計(jì)劃問題增加4單位原材料,即

因?yàn)?/p>

,最優(yōu)解變?yōu)榉强尚薪?,所以用?duì)偶單純形法迭代,

過程如下

cj34000CBXBbx1x2x3x4x53x14

1000.2500x5400-20.514x22

010.5-0.125000-2-0.250x1x3x2+0-8+2[-2]1002-0.25-0.503400140.250010300.25000-0.75-124最優(yōu)基:最優(yōu)解:最優(yōu)值:影子價(jià)格改變!??!原材料設(shè)備A設(shè)備B一、br發(fā)生變化——最優(yōu)基改變∴

的變化范圍為:

b2的變化范圍為:即:

二、最優(yōu)基不變,Δbr允許變化的范圍(1/4)cj34000CBXBbx1x2x3x4x53x141000.2500x5400-20.514x22010.5-0.125000-2-0.250例4-5求生產(chǎn)計(jì)劃問題

的變化范圍

,所以

時(shí),

時(shí),

則Δbr的變化范圍為:

負(fù)中取大≤≤正中取小

負(fù)數(shù)正數(shù)最終表中松弛變量對(duì)應(yīng)的系數(shù)矩陣最終表中的b列最終表中第r個(gè)松弛變量對(duì)應(yīng)的系數(shù)列向量,即

,仍設(shè)第r種資源發(fā)生Δbr的變化,則

二、最優(yōu)基不變,Δbr允許變化的范圍(2/4)由以上分析可知,最優(yōu)基不變則必有

二、最優(yōu)基不變,Δbr允許變化的范圍(3/4)34000341000.2500400-20.5142010.5-0.125000-2-0.250△br的變化范圍:負(fù)中取大≤≤正中取小

(3)△br的范圍是由b列與第r個(gè)松弛變量對(duì)應(yīng)的系數(shù)列向量來(lái)確定的。

(1)(2)說明:1、上述公式只能判斷一個(gè)br發(fā)生變化的情況,當(dāng)多個(gè)br同時(shí)發(fā)生變化時(shí),不適用。2、注意區(qū)分br的變化范圍與Δbr的變化范圍。3、b的變化肯定會(huì)引起最優(yōu)解的變化,但最優(yōu)基(影子價(jià)格)是否改變要應(yīng)用上述公式判斷。4、Δbr的變化范圍也確定第r種原材料買入或賣出的范圍(以例4-4為例說明),一旦超出該范圍影子價(jià)格就會(huì)發(fā)生變化。二、最優(yōu)基不變,Δbr允許變化的范圍(4/4)§4-3技術(shù)系數(shù)A

的變化二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)三、增加新產(chǎn)品四、增加約束條件

五、改變約束條件

一、A中某個(gè)元素的變化列的變化行的變化例4-6cj2-11000CBXBbx1x2x3x4x5x6-1x2240151300x670020112x12110412000-2-1-10一、A中某個(gè)元素的變化(1/2)求解x3的技術(shù)系數(shù)a13不影響最優(yōu)解的變化范圍。非基變量 此處討論的是:非基變量xj的系數(shù)列向量pj的某個(gè)分量aij發(fā)生變化?!腔兞康南禂?shù)aij的變化僅影響該非基變量的檢驗(yàn)數(shù)。

假設(shè)非基變量的系數(shù)

aij

’=aij+Δ

aij∴Δaij向小的方向變化有一個(gè)下限,向大的方向變化不會(huì)影響當(dāng)前最優(yōu)解。∵σj<0非基變量一、A中某個(gè)元素的變化(2/2)二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(1/11)—非基變量例4-7

cj2-11000CBXBbx1x2x3x4x5x6-1x2240151300x670020112x12110412000-2-1-101、非基變量的系數(shù)列向量Pk

計(jì)算檢驗(yàn)數(shù)

則最優(yōu)解不變;

(1)若,(2)若,則將和代入單純形表,用單純形法繼續(xù)迭代。

二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(2/11)—非基變量

二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(3/11)—非基變量

2-11000CBXBbx1x2x3x4x5x6-1x2240151300x670020112x12110412000-2-1-101221-1x21701012-11x37/200101/21/22x135/210013/2-1/2000-1-3/2-1/2利用單純形法繼續(xù)迭代求優(yōu)2-11000CBXBbx1x2x3x4x5x6例4-8

生產(chǎn)計(jì)劃問題

分析以上兩種情況對(duì)原最優(yōu)解會(huì)有什么影響?

二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(4/11)—基變量

cj34000CBXBbx1x2x3x4x53x141000.2500x5400-20.514x22010.5-0.125000-2-0.2502、基變量的系數(shù)列向量

Pk①迭代后直接得到最優(yōu)解;

②迭代后原問題和對(duì)偶問題均為非可行解;

③迭代后原問題為非可行解(對(duì)偶單純形法);對(duì)偶問題為非可行解(單純形法)。

(2)迭代,使xk的系數(shù)列向量迭代恢復(fù)為單位列向量,再根據(jù)恢復(fù)后的狀態(tài)處理

(1)將和代入最終表,最終表中xk的系數(shù)列向量不再是單位列向量;

二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(5/11)—基變量

例4-8生產(chǎn)計(jì)劃問題

產(chǎn)品甲的工藝改為

解:分析對(duì)原最優(yōu)解會(huì)有什么影響?

①迭代后直接得到最優(yōu)解

二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(6/11)—基變量

cj34000CBXBbx1x2x3x4x53x141000.2500x5400-20.514x22010.5-0.125000-2-0.25030434000341000.2500400-20.5142010.5-0.125000-2-0.2500.5-10.250.581000.501200-2110010.5-0.25000-2-0.5024迭代,使x1的系數(shù)列向量迭代恢復(fù)為單位列向量,再根據(jù)恢復(fù)后的狀態(tài)處理單純形表迭代后直接得到最優(yōu)解二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(7/11)—基變量

34000②迭代后原問題和對(duì)偶問題均為非可行解

例4-8生產(chǎn)計(jì)劃問題:產(chǎn)品甲的工藝改為

二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(8/11)—基變量

cj34000CBXBbx1x2x3x4x53x141000.2500x5400-20.514x22010.5-0.125000-2-0.2501-41.5-6cj34000CBXBbx1x2x3x4x53x141000.2500x52000-21.514x2-4010.5-0.5000-21.250引入人工變量(i)x2所在行同乘-1(ii)引入人工變量x6用單純形法繼續(xù)迭代求解迭代,原問題和對(duì)偶問題均為非可行解。cj34000CBXBbx1x2x3x4x53x141000.2500x52000-21.514x2-4010.5-0.5000-21.25000104-M-0.5M-0.75+0.5M0040-1-0.50.50-M-M二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(9/11)—基變量

最優(yōu)解:二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(10/11)—基變量

cj34000-MCBXBbx1x2x3x4x5x63x141000.25000x52000-21.510-Mx640-1-0.50.50104-M-0.5M-0.75+0.5M003x1210.50.2500-0.50x5803-0.501-30x480-2-110202.5-200-M+1.53x12/3101/30-1/604x28/301-1/601/3-10x416/300-4/312/3000-1/30-5/6-M+4③迭代后原問題為非可行解:用對(duì)偶單純形法迭代

迭代后對(duì)偶問題為非可行解:用單純形法迭代

二、結(jié)構(gòu)改進(jìn)(列向量發(fā)生變化)(11/11)—基變量

新產(chǎn)品的相關(guān)數(shù)據(jù)是P新、c新和σ新判斷是否生產(chǎn)該產(chǎn)品:

例4-9生產(chǎn)計(jì)劃問題計(jì)劃生產(chǎn)新產(chǎn)品丙

若σ新≥0,則生產(chǎn)該產(chǎn)品,問:①是否應(yīng)該生產(chǎn)該產(chǎn)品;②生產(chǎn)多少?

代入最終表,用單純形法迭代,求得生產(chǎn)量。

和同時(shí)將

若σ新<

0,則不生產(chǎn)該產(chǎn)品。三、增加新產(chǎn)品(增加一列)(1/2)cj34000CBXBbx1x2x3x4x53x141000.2500x5400-20.514x22010.5-0.125000-2-0.250例4-9生產(chǎn)計(jì)劃問題:計(jì)劃生產(chǎn)新產(chǎn)品丙解:①用

表示產(chǎn)量

,說明生產(chǎn)該新產(chǎn)品利潤(rùn)增加。

問:①是否應(yīng)該生產(chǎn)該產(chǎn)品;②生產(chǎn)多少?

代入最終表,用單純形法迭代,得

和②

所以應(yīng)該生產(chǎn)III三、增加新產(chǎn)品(增加一列)(2/2)其最終表見右表,增加一個(gè)約束條件

,問如何變化?

cj21000CBXBbx1x2x3x4x50x315/20015/4-15/22x17/21001/4-1/21x23/2010-1/43/2000-1/4-1/2經(jīng)過以下兩步判斷

(1)將原問題最優(yōu)解代入該約束條件,滿足,最優(yōu)解不變。否則,進(jìn)入(2)

(2)將新增約束條件加入一個(gè)松弛變量代入單純形表,迭代求解。將最終表中的解代入該約束為

不滿足該約束,所以最優(yōu)解變化

四、增加約束條件(增加一行)(1/2)例4-10已知

cj21000CBXBbx1x2x3x4x50x315/20015/4-15/22x17/21001/4-1/21x23/2010-1/43/2000-1/4-1/200x315/20015/4-15/202x17/21001/4-1/201x23/2010-1/43/200x6000-1/4-1/200x315/20015/4-15/202x17/21001/4-1/201x23/2010-1/43/200x6000-1/4-1/2001232000100003/220-3/43/210-3/200-1/4-3/210然后用對(duì)偶單純形法繼續(xù)迭代求解。求解過程,略基變量變換為單位向量四、增加約束條件(增加一行)(2/2)

cj2-11000CBXBbx1x2x3x4x5x6-1x2240151300x670020112x12110112000-2-1-10按列分析:

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論