版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
NOVEMBER13,2025
TheRiseofAI:
ARealityCheckonEnergyandEconomicImpacts
MarkP.Mills
ExecutiveDirector,NationalCenterforEnergyAnalytics
DistinguishedSeniorFellow,TexasPublicPolicyFoundationDistinguishedFellow,HammInstituteforAmericanEnergy
ARESEARCHPARTNERSHIPBETWEEN:
TheNationalCenterforEnergyAnalytics
TheHammInstituteforAmericanEnergy
2
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
ExecutiveSummary
Totalprivatesectorspendingcommittedtoartificialintelligence(AI)isnowasignificantshareofU.S.GDP.Spendingonbuildingdatacentersalone—exceeding$50billionannuallyandrising—hasnowsurpassedspendingonallothercommercialbuildingscombined.
TheevidenceofanemergingstructuralshiftintheU.S.economycanbeseeninthecombinationoftheepicspendingonAI,rapidadoptionofAItools,theimplicationsfornationalsecurity,thevigorousdebatesovertheimpactofAIinsociety,and,aswell,thestockmarketenthusiasms.
ThecoreconsequenceofAIdeployedatscaleisinitspotentialforboostingproductivity,thefeatureofeveryeconomythatdrivesgrowthandprosperity.IfdemocratizingAIelevatesU.S.productivitygrowthonlytotheaverageofthepasthalf-century,itwilladdacumulative$10trillionmoretotheU.S.GDPthanisnowforecastoverthecomingdecade.
OftenignoredinAIforecasts:theadditionalwealthcreatedbyusingthenewtechnologyleadstobehaviorsthatusemoreenergy.Anextra$10trillionwouldleadtoincreasedoverallenergyuseequivalenttoaboutfivebillionbarrelsmoreenergyoverthenextdecade.Suchawealth-inducedincreaseinenergyconsumptionwillbefargreaterthanthequantityofenergyneededtopowerthewealth-creatingAI.Butunleashingthiseconomicandstrategicopportunityrequiresbuilding,andpowering,theAIinfrastructure.
AIdatacentersarenotuniqueinthatregard.Energyisthe“masterresource”neededforoperatingeverypartofcivilization.AsNvidiaCEOJensenHuangrecentlysaid:“AIisenergy,AIischips,themodels,andtheapplications....Andweneedmoreenergy.”Asithappens,datacentersaremeasuredandtrackedintermsofpowerinwatts,notdatainbits.
WhatisuniqueaboutAIdatacentersisthescaleandvelocityofpowerdemandsnowemerging.Someindividualdatacentersnowunderconstructionwillhavecity-scalepowerdemands,andhundredsarebeingbuiltorplanned.Therateofconstruction—especiallyincombinationwithreshoringmanufac-turingandreanimatingbasicdomesticindustries—hasendedthetwo-decadeinterregnumofflatelectricsectorgrowth.
Policymakers,investors,andbusinessesintheAIsupplychainareallinterestedindiscerningjusthowmuchadditionalelectricitywillbeneededspecificallyforpoweringdatacentersandhowitwillbesupplied.Forthisanalysis,we’verevieweddozensofdifferentindustryandtechnicalreportstolookforcluesandconsensus.
ThefactsandtrendssuggestAIdigitaldemandswillrequirebuildingno
lessthanabout75GW,possiblyasmuchas100GWofgenerationby2030.Andneitheroutcomeincludestheelectricitydemandsforexpandingtheancillarybutdirectlyrelatedtelecommunicationsnetworks,aswellasthatneededforreshoredchipfabricationfacilitiesthatwillmanufacturethelogicenginesinsidethedatacenters.
Tomeetthatmuchnewdemandby2030,underlyingengineeringrealitiesshowthatmostoftheadditionalelectricitygenerationwillnecessarilycomefromburningnaturalgas.Thatwill,inturn,requireabouta10%to20%increaseinoverallU.S.gasproduction.
ThatriseingasdemandwilloccurcontemporaneouslywithroughlythesameamountofnewdemandcomingfromadditionalLNGexportterminalsthatarealreadyunderconstruction.
Thenationiscapable,technically,ofmeetingsuchalevelofgrowthinnaturalgasproduction,pipelineinstallations,andpowerplantconstruction.Theprimaryimpedimentsareinstitutionalandregulatory.
Inthelonger-term,astheAIstructuralrevolutioncontinuestoplayoutpast2030,evengreaterenergydemandswillemergetopowerthenextphaseofgrowth.Thosedemandswilllikelybemetincreasinglyfromnuclearenergyandadditionalsolarcapacity.Buteachofthoserequireassociatedinfrastruc-tureexpansionsthat,inherently,takefarlongerthanthecurrenttorridpaceofAIconstruction.Nevertheless,ifrelevantpoliciesandprojectsarenotputinplacetoday,electricityplannersintheforeseeablefuturewillbeagaincaughtflat-footedinfailingtoprepareforgrowth.
Thechallengeisthatelectricity-relatedenergypoliciesnowinplacewereframedduringtherecentperiodoflowornogrowth,combinedwithmisguidedpursuitsofanenergytransitiontoreplaceconventionalenergysources.TheAIboomhasilluminatedthefactthatnewperiodsofgrowthareinevitable—evenifdifficulttopredict—andthatsuchperiods,predictably,leadtoincreasedenergydemandsrequiringadditionsto,ratherthanreplacementsof,existingenergysystems.
Googleobservedearlierthisyearthat“AIpresentstheUnitedStateswithagenerationalopportunityforextraordinaryinnovationandgrowth”butthatitrequires“expeditedefforttoincreasethecapacityof...U.S.energysystems.”AJuly2025WhiteHousedirective,WinningtheRace:America’sAIActionPlan,calledontheprivatesectortobuildthe“vastAIinfrastructureandtheenergytopowerit.”Thatispreciselywhatisunderwayinanhistoricconvergenceofthetechnology,energy,andfinancialsectors.
3
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
KeyTakeawayswithImplicationsforPolicymakers
ThegreatAIinflectionismarket-driven:
?TheracetobuildAIinfrastructuresandservicesisbeingfundedbytheprivatesector1i.e.1itisnotapolicy-driventransformation.
?ThepaceofAIadoptiondependsonintegrationchallengesforspecificapplications1andthematurityandefficacy(power)oftheAItools1i.e.1morepowerfulandusefulAItoolsarerapidlyemergingthatwilldrivemoreadoption.
Threekeymetricsilluminatethetransformation:
?TherateofprogressintheunderlyingAIcomputecapabilitiesfollowsawell-established1predictabletrendofexponentialgains.
?AIcomputationalperformancehasincreasedathousandfoldsince2018andiscontinuingatthatpace.
?ThescaleandvelocityofprivatecapitaldeployedtobuildAIinfrastruc-tureissettingrecordsbuthasnot(yet)exceededhistorichighsincomparableperiods.
?Over$1trillionorprivatecapitalisplannedorontracktobespenttobuildAIinfrastructure.
?ThescaleofenergydemandsforAIinfrastructureswillrequiresubstan-tialexpansionofbothelectricpowerandnaturalgasproduction.
?ThelikelypaceofAIwillrequire75–100GWofnewelectricitygenerat-ingcapacitytosupplyasmuchas11000terawatt-hoursayearmoreelectricityfordigitaldemandsbytheearly2030s.
?Thenewpowerplantswilldrivetheneedfora10%–15%overallincreaseinU.Snaturalproduction,contemporaneouswithasimilarincreaseindemandforLNGexports.
Akey1enablingrequirement:meettheunprecedentedscaleof
electricitydemandofindividualfacilities1atthevelocitybeingbuilt.
?Hundredsofplanneddatacentershavedemandexceeding300MWeach1manyover1GW1withconstructioncompletionsoftenintwoorthreeyears.Therearenoprecedentsinutilityhistoryforsuchscaleorvelocity.
?Thepaceandscaleareintensionwithsupplychainsandworkforceavailabilityinasectorthatisaccustomedtoflatgrowthwithregula-tions1policies1andconventionsadoptedinrecentyearstopursueanenergytransition.
?Paceandscalearealsointensionwiththeneedtonotcompromisegridreliabilityorimposecostsonresidentialratepayers.
Engineeringrealitieswilldictateviablesolutions.TherearetwotimeframesformeetingAIpowerdemand:
?Twotofiveyears:Variousclassesofnaturalgasturbinesandenginesdominate.
?Thetechnicalcapacityexiststomeetthedemandsforgasproduction,pipelines,andpower-producingengines.Bothgrid-integrationandprivategridapproachestoprojectsareunderway.
?Fiveto10years:Feasiblefornewnucleargenerationandexpandingtransmissiontoaccessutility-scalesolar/windfacilities(requiringgrid-scalebatteries).
?Bothfacesupplychainchallenges;solar,wind,batterieswithforeignorChinasourcedinputs;nuclearwithrestoringatrophiedinfrastruc-tures.Thereisnoclearpathtosignificantaccelerationoftransmissionconstruction(naturalgaspipelineconstructionisfarfaster).
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
4
Introduction
StructureofTechnologicalRevolutions
Ithasescapednoone’sattentionthateye-wateringamountsofcapitalarebeingdeployedintheprivatesectoronartificialintelligence(AI).Similarly,it’snowcommonknowledgethatthegreatAIbuild-outisinducingincreasesinelectricdemandnotseenfordecades.
Aswithalltechnologies,whatappearstobeanovernightphenomenoninfactcomesfromyearsofengineeringdevelopmentsandincrementalprogress.Historyshowsthatwhentherelevantcapabilitiesbecomegoodenoughandcostsarelowenough,atippingpointisreached,andaninflectionhappenswithrapidand“surprising”growth.
EconomichistorianJoelMokyr,theco-recipientofthisyear’sNobelPrizeinEconomicSciences,borrowedfromphysicstheterm“phasechange”todescribesuchinflections,whentransformationalinnovationstriggereconomicandsocialrevolutions.1Thechangeintheeconomyandindailylife—frompre-topost-railroad,fromanagrariantoindustrialsociety—wasaphasechangeasdramaticasaliquidbecomingasolid.
AsprofessorMokyrwroteinoneofhismanyseminalbooks,TheLeverofRiches:“Technologicalprogresshasbeenoneofthemostpotentforcesinhistoryinthatithasprovidedsocietywithwhateconomistscalla‘freelunch,’thatis,anincreaseinoutputthatisnotcommensuratewiththeincreaseineffortandcostnecessarytobringitabout.”2
Buttechnologies’economicandsocietalbenefitsaren’tunlockedinisolation.Mokyrisnotna?veinhis“freelunch”observationbutratherusesthataphorismtoframestructuralrevolutions,i.e.,howaphasechangeoccursintherealworld.
InMokyr’sframing,suchrevolutionsoccurattheintersectionofthreeforces:newknowledgeinstantiatedthroughtechnology,theavailabilityandsourcesofcapitaltodeploytechnologies,andtheroleofinstitutionsthatenableorconstraindeployment.
FewdoubtthatAIisconsequential,eveniftherearesomewhoaremoreanxiousthanexcitedaboutthepossibilities.ThenatureoftheopportunitiesandwhatitwilltaketoensurethattheUnitedStatescancapturethebenefitsfromAIcanberevealedbyansweringthreequestionsaboutthefuture,withalltheusualcaveatsaboutpredictions,aroundwhichthisreportisorganized.
1.IsAIastructuralshiftorabubble?
2.Whataretheupstreampowerimplications?
3.WhataretheconstraintstounleashingthenecessaryenergytofuelanAIboom?
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
5
1.TheStructuralShift
1.1PillaroftheBoom:ComputePower
PerformanceGainsinAISupercomputers
Source:KonstantinF.Pilzetal.,“TrendsinAISupercomputers,”arXiv,Apr.23,2025
EconomicPerformanceGainsofConventionalComputers
Source:HansMoravec,“WhenWillComputerHardwareMatchtheHumanBrain?”JournalofEvolutionandTechnology,vol.1
(1998).
ThereleaseofChatGPTonNovember30,2022,ledtowidespreadpublicrecognitionthatAIwasnowgoodenoughtobecomeincreasinglyuseful—andtodisruptbusinesses,institutions(andthuspolicymaking),andstockmarkets.Itwastheclimaxofdecades-longtechnologicalachievements.
Thearrivalofsupercomputerspowerfulenoughtoexecutethecomplexmathematicsandcodingof“machinelearning”arrived,predictably,becauseoftheinexorable,exponentialgainsincomputeperformance(measuredinFLOPS/second,orlogicoperationspersecond,whereinconventionalcomputerprogressisoftenmeasuredinthemoregeneralMIPS,millioninstructionspersecond[MIPS]).Aswiththefirstcomputerrevolution,therateofimprovementcontinuesunabatedandexponentially.
Theerawhenbinarylogiccomputersweredemocratized,circa1980,offersananalogyforthestateandfutureoftheemergenceofpracticalAI—atechnol-ogythathasbeeninexistencefordecades,justasdigitalcomputershadbeenby1980.
Theoriginofdigitalcomputersbasedonbinarylogictracesto1937,withClaudeShannon’sseminalMITmaster’sthesis,theMagnaCartaofthedigitalage.3AlanTuring,acolleagueofShannon,observedatthetimethattheColossuscomputer(builtduringWorldWarII,justbeforetheU.S.Eniac)couldperformtasksthatwouldotherwisehavetaken,asTuringissaidtohaveobserved,“100Britonsworkingeighthoursadayondeskcalculators100years”tocracktheGermancode.4SomefourdecadeswouldpassbeforetheageofthePCwouldarrivebecauseoftheinexorable,exponentialprogressincomputepower.
Similarly—nearlyfourdecadesbeforethereleaseofChatGPT—theconceptofalearningalgorithm,of“machinelearning,”tracestoaseminal1986paperco-authoredbyGeoffreyHinton,creditedasa“godfather”ofAI.ButthesiliconenginesthatcouldrealizeHinton’svisiondidnotemergeuntil1993,whenJen-Hsun“Jensen”Huangco-foundedNvidia.5
Aswithearlier,conventionallogic,ittookdecadesofadvancementforsiliconhardwaretobecomesufficientlypowerfulandinexpensivetodemocra-tizethemassivelyparallelfunctionsinherenttoAI.Thepasthalf-dozenyearshaveseenathousandfoldincreaseinAIcomputationalpower,unlockingusefulAI—apacethatisnotslowing;indeed,evidencepointstoanacceleration.6
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
6
1.2TheSpending:DataCenters
SpendingonConstruction:OfficesvsDataCenters
Note:Spendingrecordedintheyearconstructionstarts.
Source:LydiaDePillis,“TheA.I.SpendingFrenzyIsProppingUptheRealEconomy,Too,”TheNewYorkTimes,August27,2025.
BigTechCapitalSpending
Source:IanHarnett,TheAICapexEndgameIsApproaching,FinancialTimes,October3,2025.
TheJuly2025WhiteHousedirective1WinningtheRace:America’sAIActionPlan1summarizedthestateofplayregardingtheAIimperative1issuedacallto“buildandmaintainvastAIinfrastructureandtheenergytopowerit1”andofferedadirectivethatthenationshould“Build1Baby1Build!”7
Privatesectorspendingondatacentershadbeenrunningatroughly$10billionperyearratebeforethe2022releaseofChatGPT.Sincethen1spendingtookoff—datacenterconstructionthisyearsurpassedconstructionspendingonallotherU.S.commercialbuildings.Thespendrateexceedscurrenttotalspendingtobuildeithermanufacturingfacilitiesorpowerplants.8
Someanalystsworrythatthespending1andtheassociatedescalationinstockvaluationsofallthecompaniesintheAIecosystem1upstreamanddownstream1pointstoaclassicbubble.9However1BlackRockrecentlymadeabetonthefuturewitha$40billionacquisitionofAlignedDataCenters—the”largestdatacenterdealinhistory”—inaclearsignalofthatfirm1sexpectationofalong-runtrend1notabubble.10Ofcoursethereisacorrelationbetweenthetwodomainsofwhatinvestorsthinkastockisworthandwhatisbeingbuiltandplanned1andexpectationsaboutthefutureusesofAI.
TotalcapitalspendingonAIinfrastructuresisontracktoexceed$1trillionayear1withsomeanalystspredictingacumulative$5trilliondeployedby2030.11Whileonlyhindsightwillrevealwhetherornotprivateandpublicmarketinvestorsentimentswereoverexuberant1thereareanumberofbasicindica-torsthatcanrevealwhethertheAIboomisstructural1i.e.1asecularshiftintheeconomy1orastockfad.
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
7
1.3TheSpending:CurrentContext
U.S.BusinessSectorCapitalExpenditures
Source:FederalReserveBankofSt.Louis
CloudServices:GlobalRevenues
Source:Statista
OverallU.S.businessspendingoninformationinfrastructureshas1sincethestartofthe21stcentury1dominated1dominatedoverallspendingonthefourcoreareasofprivatesectorinvestment1substantiallyexceedingcapitaldeployedforindustrialequipment1transportationequipment1andstructures.Theshareofthatinformationinfrastructurespendinghasbeenincreasinglyshiftingfrompurchasesofon-sitecomputetoenterprisecloud-basedservices.ThearrivalofAIacceleratesthetrendbecausethedominantlocusofAIspendingisoncloudinfrastructure.
Thecurrentlevelofdatacentercapitaldeployed(annualspendingonconstruction1ratherthanstatedtotalcommitments)canbeputinthecontextoftheoverallscaleofnearly$1trillioninannualspendingbybusinesstousecloudservices.RoughlyhalfofglobalcloudservicesisprovidedbyU.S.businesses.12
Ofcourse1allinfrastructuresatscalenecessarilyconsumesignificantamountsofenergytooperate.Attentiontothatrealitywastriggeredbya2024FederalEnergyRegulatoryCommission(FERC)forecastthatdrewonarangeofestimatessuggestingtheU.S.wouldneedbetween50GWand130GWmoregeneratingcapacitythanhadbeenearlierimagined1endingthetwo-decadeinterregnumofnearlyflatelectricsectorloadgrowth.13
Forcontext1theannualenergyusedbyasingle1-GWdatacenterismorethantenfoldtheannualenergyusedbycarson11000milesofsuperhighway.Itcostsabout$10billiontobuildbotha1-GWdatacenterand11000milesofhighways.Andthecostoftheenergy-usingGPUsinsidethedatacenterisanother$20billion1essentiallythesameasthe$20billioncostofthequantityofcarsthat11000milesofhighwaysupports(atpeak).14
Thus1thebiggestquestionforthe21stcentury:Areweattheequivalentof1958inbuildingoutanewAI-infused“informationsuperhighway”infrastruc-ture1orareweapproachingtheequivalentoftheyear1992whenthelastsectionofthe401000milesofinterstatenetworkwascompleted?
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
8
1.4TheSpending:HistoricalContext
StockMarketConcentrationbySector
Source:GoldmanSachs,“WhyWeAreNotinaBubble…Yet,”GlobalStrategyPaperNo.73,October8,2025
ConstructionSpendingbyChemicalIndustries:1900to1930
Source:EstimateinterpolatedfromavailableCensusbenchmarks(seeendnote18)
Inthefaceofdisruptions,analystsandjournalistsseekillustrativeanalogieshopingsomeareusefultogaugetrends.TheAIraceisoftenframedasaManhattanProjectoramoonshot.15Botharecategoryerrorsontwocounts;bothwereanchoredingovernmentspendingandprograms,andbothinvolvedsingle-purposegoals,notinfrastructures.
AnalogizingtheAIbuild-outwiththeconstructionoftheU.S.InterstateHighwaySystemdoesilluminatetheenergyfeaturesofnation-scaleinfrastruc-tures,but,alsounlikeAI,thehighwaysystemwasfinancedwithpublicfunds.Theprivatelyfinancedcontinentalrailroadsystemhasalsobeenoffered;spendingtripledfromthe1840sto1870s,peakingatover5%ofthenation’sGDP.16However,acomparisonwithAIwouldbemoreanalogoustoconsid-eringtheoverallspendingonthegreattransportationtransformationmadepossiblebytheunderlyingtechnologyofthecombustionengine.
Theemergenceoftheinternetinfrastructureoffersamorerecentanalogy,thoughittoowouldbemorerelevantintermsofthecontemporaneousexpansionoftheinternetalongwithcellularnetworksandthePC.Whilethatbuild-outwasassociatedwiththeinfamousdot-combubbleof1999,itisobviousinhindsightthatalltheenthusiasms—andthecollateralneedforphysicalinfrastructures—wereallrealizedandexceededinthesubsequentyears.Thatboomwasprivatelyfinanced,whereinthecapitaldeployedreached1.25%ofGDP—alevelthattheAI/cloudbuild-outisabouttoreach.17
Perhapsthemostsuitableanalogyistherevolutionarydevelopmentofchemicalscienceattheendofthe19thcenturyandthesubsequentemergenceofthechemicalindustryintheearly20thcentury.Chemicalscienceallowedhumanitytomanipulatethebasicbuildingblocksofmoleculesandatomstoinventandfabricateentirelynewproductsandservices,frompharmaceuticalstothepolymersthatareessentialtonearlyeverymodernproduct.Similarly,theknowledgeunderlyingtheinventionofAI,machinelearning,andlargelanguagemodelsenablesmanipulationofbasicdatatocreate—hencethenewlocutionof“AIfactories”—entirelynewclassesofproductsandservicesforeverysectoroftheeconomy.
Notably,overthetwodecadespriorto1929,privatesectorinvestmenttobuildwhatwasthenrevolutionarychemicalfactoriesandinfrastructuresrosetoover5%ofGDP.18
TomatchthatshareofGDPby2030,AIspendingwouldhavetoreachnearly$2trillionayear,alevelintherangeofsomeforecasts.19
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
9
1.5TheImpact:ProductivityDeficit
LaborProductivityGrowthRate
Source:J.P.MorganAssetManagement,TheTransformativePotentialofArtificialIntelligence,2023.
U.S.GDP:TwoProductivityGrowthScenarios
Source:“RekindlingUSProductivityforaNewEra1”McKinseyGlobalInstitute,February16,2023
Inhisacceptancespeechforthe1987NobelPrizeinEconomicSciences1RobertSolowobservedthat“technologyremainsthedominantengineofgrowth1withhumancapitalinvestmentinsecondplace.”20Thecollectiveeffectoftechnologicalprogress—enabledbycapitalmarketsandfacilitatedbyinstitutions—yieldedanhistoricjumpinU.S.laborproductivityfollowingWorldWarIIwhich1inturn1producedanenormouswealthexpansion.
Technologyhas1overvariousperiodsinhistory1yieldedsimilargainsinproductivity.From1910to19301thelabor-hoursneededpercarmanufactureddroppednearlyfivefold1asdidthelabor-hourspertonofsteel.21Therailroad-eraproductivitygainsinshippingwerevisiblenotjustfromgreaterspeedthanhorse-and-wagontransportbutalsobecauseofa25-foldcollapseintheton-milecostofshippinggoods1withsimilargainsformovingpeople.
Lookingfurtherback1theflourishingMiddleAgescamefrommachineinventionsinan“ageofreasonandmathematics1”aseconomichistorianJeanGimpelframeditinhisbook1TheMedievalMachine.Backthen1manymachinescutman-hoursneededbyasmuchastenfold1farmorethanthemere10%to30%laborcutsnowbeingattributedtoAI.22
TheessenceofAI1spromiseliesinhow—acrossmanyandvariedapplica-tions—itwillyieldmeaningfuland1eventually1trulyconsequentialproductivi-tygains.Indeed1marketadoptionisfundamentallyonlyexplicablebyvirtueoftheopportunitytoimproveproductivity.
Initseconomicforecasts1theU.S.CongressionalBudgetOfficeassumesa1.4%annualproductivitygrowthrateforthenextdecade1aslightincreaseoverthepastdecade1sanemicandhistoricallylowaverageof1.2%.23WhilesomeanalystsbelieveAIcanboosttheU.S.economytoa4%productivitygrowthrate1thehighestlevelinthepostwarperiod—andthereisgoodevidencetosupportthatoptimism—considerinsteadtheimplicationsofmerelyrestoringtheratetothepostwarlong-runaverageof2.2%.Thatwould1arithmetically1induceacumulative$10trillionofgreatereconomicgrowthoverthecomingdecadethaniscurrentlyforecast.
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
10
1.6TheImpact:ProductivityPromise
ReportedImpactsfromUsingAI
Source:The2025AIIndexReport(StanfordUniversity),chap.4,p.49
GrowthinAIPatentsIssued(2018-2023)
Source:WIPOPatentLandscapeReport,2024
Theabsenceofanyrecent,dramaticincreasesincorporaterevenueshasbeenheldupasevidencefortheabsenceofrealbenefitsfromAI.24However,theproperplacetostartlookingisincostsavingsthatyieldthesameoutput,i.e.,theverydefinitionofproductivity.
Note,forexample,theconclusionfromasurveyofcorporateusesforAIthusfar,pertheStanfordUniversity’s2025AIIndexReport:“TheareaswhererespondentsmostfrequentlyreportedthattheiruseofAIhasresultedincostsavingswereserviceoperations(49%),supplychainandinventorymanage-ment(43%),andsoftwareengineering(41%).Forrevenuegains,thefunctionsthatmostcommonlybenefitedfromtheiruseofAIincludemarketingandsales(71%),supplychainandinventorymanagement(63%),andserviceoperations(57%).”25
Inotherwords,AIproductivitygainsarecomingfirstininformation-centricapplications,theproverbiallow-hangingfruitforapplyingsoftware.Applica-tionsinphysicalsystems—whichconstitute80%oftheGDP—willtakelongerbutlikelybemoreconsequential.
Becausebusinessesfilepatentsinadvanceofwidespreaddeployment,wecanusepatentsasaleadingindicatorofwherefutureproductivitygainsarelikelytoemerge.ThedatashownotonlyaboominAIpatentsissuedoverthepasthalf-dozenyearsbutalsothatmanyareinoperationalbusinessactivitieswhereproductivitygainsareconsequential.
TheRiseofAI:ARealityCheckonEnergyandEconomicImpacts
11
1.7Adoption:EarlyDays
DevelopmentStatusSurveyofBusinessesUsingAI
Source:“AIAdoptionAcrossIndustries:TrendsYouDon’tWanttoMissin2025,”CoherentSolutions,October30,
2025
SurveyofAIUsesbyIndustry
Source:“TheStateofAIin2025:Agents,Innovation,andTransformation,”McKinsey&Company,Nov.5,
Forallbusinesses,theopportunitytoincorporatenewtechnologies—whetherhardwareorsoftware—intoexistingproductsorprocessesinvariablyentailsawell-knownlearningcurve.Therearenoexceptions.
Considermanufacturing,notonlybecauseoftherecentpoliticalrediscov-eryofthefundamentalimportanceofthatsectorbutalsobecauseofU.S.goalsandpoliciesforreshoring.RockwellAutomation’s2025globalsurveyofover1,500manufacturersfoun
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年發(fā)展研究院招聘公共績(jī)效與信息化研究中心項(xiàng)目主管崗位備考題庫及參考答案詳解1套
- 合肥共達(dá)職業(yè)技術(shù)學(xué)院2025年專任教師公開招聘?jìng)淇碱}庫有答案詳解
- 四川農(nóng)商聯(lián)合銀行信息科技部2026年校園招聘?jìng)淇碱}庫及參考答案詳解1套
- 2025年中國(guó)社會(huì)科學(xué)院亞太與全球戰(zhàn)略研究院公開招聘第一批專業(yè)技術(shù)人員備考題庫及參考答案詳解
- 中國(guó)人民銀行清算總中心直屬企業(yè)銀清科技有限公司2026年度公開招聘?jìng)淇碱}庫及答案詳解參考
- 代辦簽證協(xié)議書
- 交通運(yùn)輸部所屬事業(yè)單位2026年度第三批統(tǒng)一公開招聘?jìng)淇碱}庫及參考答案詳解一套
- 房地產(chǎn)企業(yè)稅務(wù)稽查的會(huì)計(jì)配合-資料完整與解釋合規(guī)答辯匯報(bào)
- 建筑合同廉政協(xié)議
- 工程險(xiǎn)理賠協(xié)議書
- 醫(yī)院優(yōu)先使用集采藥品培訓(xùn)
- 一例肩難產(chǎn)分娩個(gè)案護(hù)理
- 食品廠消防管理制度
- d照駕駛證理論考試試題及答案
- GA 68-2024警用防刺服
- 炭窯口硫鐵礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 2025年西點(diǎn)烘焙師職業(yè)考試試卷及答案
- 六西格瑪黑帶培訓(xùn)大綱
- 2025年公安信息管理學(xué)及從業(yè)資格技能知識(shí)考試題與答案
- 興業(yè)銀行貸款合同模板大全
- 高考數(shù)學(xué)一輪復(fù)習(xí)橢圓省公開課金獎(jiǎng)全國(guó)賽課一等獎(jiǎng)微課獲獎(jiǎng)?wù)n件
評(píng)論
0/150
提交評(píng)論