版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省雞西市東方紅林業(yè)局中學(xué)2025-2026學(xué)年高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在實數(shù)的原有運算法則中,補充定義新運算“”如下:當時,;當時,,已知函數(shù),則滿足的實數(shù)的取值范圍是A. B.C. D.2.若,,則下列結(jié)論正確的是()A. B.C. D.a,b大小不確定3.基本再生數(shù)R0與世代間隔T是新冠肺炎流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天4.若是三角形的一個內(nèi)角,且,則的值是()A. B.C.或 D.不存在5.設(shè)函數(shù),有四個實數(shù)根,,,,且,則的取值范圍是()A. B.C. D.6.如果角的終邊在第二象限,則下列結(jié)論正確的是A. B.C. D.7.已知冪函數(shù)在上單調(diào)遞減,則m的值為()A.0 B.1C.0或1 D.8.在數(shù)學(xué)中,布勞威爾不動點定理是拓撲學(xué)里一個非常重要的不動點定理,它可應(yīng)用到有限維空間,并構(gòu)成一般不動點定理的基石,布勞威爾不動點定理得名于荷蘭數(shù)學(xué)家魯伊茲·布勞威爾(L.E.J.Brouwer),簡單的講就是對于滿足一定條件的連續(xù)函數(shù),存在點,使得,那么我們稱該函數(shù)為“不動點”函數(shù),下列為“不動點”函數(shù)的是()A. B.C. D.9.若點在函數(shù)的圖像上,則A.8 B.6C.4 D.210.函數(shù)的零點所在的區(qū)域為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知正三棱柱的所有頂點都在球的球面上,且該正三棱柱的底面邊長為2,高為,則球的表面積為________12.若不等式對一切恒成立,則a的取值范圍是______________.13.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限角,且,則;④是函數(shù)的一條對稱軸方程以上命題是真命題的是_______(填寫序號)14.兩個球的體積之比為8:27,則這兩個球的表面積之比為________.15.各條棱長均相等的四面體相鄰兩個面所成角的余弦值為___________.16.在正方體中,直線與平面所成角的正弦值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)判斷的奇偶性并證明;(2)用函數(shù)單調(diào)性的定義證明在區(qū)間上單調(diào)遞增;(3)若對,不等式恒成立,求實數(shù)的取值范圍.18.如圖,游客從某旅游景區(qū)的景點A處下山至C處,第一種是從A沿直線步行到C,第二種是先從A沿索道乘纜車到B,然后從B沿直線步行到某旅客選擇第二種方式下山,山路AC長為1260m,從B處步行下山到C處,,經(jīng)測量,,,求索道AB的長19.已知集合,,,全集為實數(shù)集()求和()若,求實數(shù)的范圍20.已知函數(shù)為奇函數(shù)(1)求實數(shù)k值;(2)設(shè),證明:函數(shù)在上是減函數(shù);(3)若函數(shù),且在上只有一個零點,求實數(shù)m的取值范圍21.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(1)求證:EF∥平面ABD1;(2)AA1=,求異面直線EF與BC所成角的正弦值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】當時,;當時,;所以,易知,在單調(diào)遞增,在單調(diào)遞增,且時,,時,,則在上單調(diào)遞增,所以得:,解得,故選C點睛:新定義的題關(guān)鍵是讀懂題意,根據(jù)條件,得到,通過單調(diào)性分析,得到在上單調(diào)遞增,解不等式,要符合定義域和單調(diào)性的雙重要求,則,解得答案2、B【解析】根據(jù)作差比較法可得解.【詳解】解:因為,所以故選:B.3、B【解析】根據(jù)題意可得,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結(jié)果.【詳解】因為,,,所以,所以,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點睛】本題考查了指數(shù)型函數(shù)模型的應(yīng)用,考查了指數(shù)式化對數(shù)式,屬于基礎(chǔ)題.4、B【解析】由誘導(dǎo)公式化為,平方求出,結(jié)合已知進一步判斷角范圍,判斷符號,求出,然后開方,進而求出的值,與聯(lián)立,求出,即可求解.【詳解】,平方得,,是三角形的一個內(nèi)角,,,,.故選:B【點睛】本題考查誘導(dǎo)公式化簡,考查同角間的三角函數(shù)關(guān)系求值,要注意,三者關(guān)系,知一求三,屬于中檔題.5、A【解析】根據(jù)分段函數(shù)解析式研究的性質(zhì),并畫出函數(shù)圖象草圖,應(yīng)用數(shù)形結(jié)合及題設(shè)條件可得、、,進而將目標式轉(zhuǎn)化并令,構(gòu)造,則只需研究在上的范圍即可.【詳解】由分段函數(shù)知:時且遞減;時且遞增;時,且遞減;時,且遞增;∴的圖象如下:有四個實數(shù)根,,,且,由圖知:時有四個實數(shù)根,且,又,由對數(shù)函數(shù)的性質(zhì):,可得,∴令,且,由在上單增,可知,所以故選:A6、B【解析】由題意結(jié)合三角函數(shù)的性質(zhì)確定所給結(jié)論是否正確即可.【詳解】角的終邊在第二象限,則,AC錯誤;,B正確;當時,,,D錯誤本題選擇B選項.【點睛】本題主要考查三角函數(shù)符號,二倍角公式及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.7、A【解析】根據(jù)冪函數(shù)得的定義,求得或,結(jié)合冪函數(shù)的性質(zhì),即可求解.【詳解】由題意,冪函數(shù),可得,解得或,當時,可得,可得在上單調(diào)遞減,符合題意;當時,可得,可得在上無單調(diào)性,不符合題意,綜上可得,實數(shù)的值為.故選:A.8、C【解析】根據(jù)已知定義,將問題轉(zhuǎn)化為方程有解,然后逐項進行求解并判斷即可.【詳解】根據(jù)定義可知:若有不動點,則有解.A.令,所以,此時無解,故不是“不動點”函數(shù);B.令,此時無解,,所以不是“不動點”函數(shù);C.當時,令,所以或,所以“不動點”函數(shù);D.令即,此時無解,所以不是“不動點”函數(shù).故選:C.9、B【解析】由已知利用對數(shù)的運算可得tanθ,再利用倍角公式及同角三角函數(shù)基本關(guān)系的運用化簡即可求值【詳解】解:∵點(8,tanθ)在函數(shù)y=的圖象上,tanθ,∴解得:tanθ=3,∴2tanθ=6,故選B【點睛】本題主要考查了對數(shù)的運算性質(zhì),倍角公式及同角三角函數(shù)基本關(guān)系的運用,屬于基礎(chǔ)題10、C【解析】根據(jù)函數(shù)解析式求得,根據(jù)函數(shù)的零點的判定定理求得函數(shù)的零點所在區(qū)間【詳解】解:函數(shù),定義域為,且為連續(xù)函數(shù),,,,故函數(shù)的零點所在區(qū)間為,故選:【點睛】本題主要考查函數(shù)的零點的判定定理的應(yīng)用,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】首先判斷正三棱柱外接球的球心,即上下底面正三角形中心連線的中點,然后構(gòu)造直角三角形求半徑,代入公式求解.【詳解】如圖:設(shè)和分別是上下底面等邊三角形的中心,由題意可知連線的中點就是三棱柱外接球的球心,連接,是等邊三角形,且,,,球的表面積.故答案為:【點睛】本題考查求幾何體外接球的表面積的問題,意在考查空間想象能力和轉(zhuǎn)化與化歸和計算能力,屬于基礎(chǔ)題型.12、【解析】先討論時不恒成立,再根據(jù)二次函數(shù)的圖象開口方向、判別式進行求解.【詳解】當時,則化為(不恒成立,舍),當時,要使對一切恒成立,需,即,即a的取值范圍是.故答案為:.13、②④【解析】根據(jù)三角函數(shù)的性質(zhì),依次分析各選項即可得答案.【詳解】解:①因為,故不存在實數(shù),使得成立,錯誤;②函數(shù),由于是偶函數(shù),故是偶函數(shù),正確;③若,均為第一象限角,顯然,故錯誤;④當時,,由于是函數(shù)的一條對稱軸,故是函數(shù)的一條對稱軸方程,正確.故正確的命題是:②④故答案為:②④14、【解析】設(shè)兩球半徑分別為,由可得,所以.即兩球的表面積之比為考點:球的表面積,體積公式.15、【解析】首先利用圖像作出相鄰兩個面所成角,然后利用已知條件求出正四面體相鄰兩個面所成角的兩邊即可求解.【詳解】由題意,四面體為正三棱錐,不妨設(shè)正三棱錐的邊長為,過作平面,垂足為,取的中點,并連接、、、,如下圖:由正四面體的性質(zhì)可知,為底面正三角形的中心,從而,,∵為的中點,為正三角形,所以,,所以為正四面體相鄰兩個面所成角∵,∴易得,,∵平面,平面,∴,故.故答案為:.16、【解析】連接AC交BD于O點,設(shè)交面于點E,連接OE,則角CEO就是所求的線面角,因為AC垂直于BD,AC垂直于,故AC垂直于面.設(shè)正方體的邊長為2,則OC=,OE=1,CE,此時正弦值為故答案為.點睛:求線面角,一是可以利用等體積計算出直線的端點到面的距離,除以線段長度就是線面角的正弦值;高二時還會學(xué)到空間向量法,可以建系,用空間向量的方法求直線的方向向量和面的法向量,再求線面角即可.面面角一般是要么定義法,做出二面角,或者三垂線法做出二面角,利用幾何關(guān)系求出二面角,要么建系來做.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為奇函數(shù),證明見解析(2)證明見解析(3)【解析】(1)求出函數(shù)的定義域,然后驗證、之間的關(guān)系,即可證得函數(shù)為奇函數(shù);(2)任取、,且,作差,因式分解后判斷差值的符號,即可證得結(jié)論成立;(3)由參變量分離法可得出,令,求出函數(shù)在上的最大值,即可得出實數(shù)的取值范圍.【小問1詳解】證明:函數(shù)為奇函數(shù),理由如下:函數(shù)的定義域為,,所以為奇函數(shù).【小問2詳解】證明:任取、,且,則,,,所以,,所以在區(qū)間上單調(diào)遞增.【小問3詳解】解:不等式在上恒成立等價于在上恒成立,令,因為,所以,則有在恒成立,令,,則,所以,所以實數(shù)的取值范圍為.18、索道AB的長為1040m【解析】利用兩角和差的正弦公式求出,結(jié)合正弦定理求AB即可【詳解】解:在中,,,,,則,由正弦定理得得,則索道AB的長為1040m【點睛】本題主要考查三角函數(shù)的應(yīng)用問題,根據(jù)兩角和差的正弦公式以及正弦定理進行求解是解決本題的關(guān)鍵19、(1),.(2)【解析】(1)由題意可得:,,,則,.(2)由題意結(jié)合集合C可得試題解析:(),,,所以,則.(),所以20、(1)-1;(2)見解析;(3).【解析】(1)由于為奇函數(shù),可得,即可得出;(2)利用對數(shù)函數(shù)的單調(diào)性和不等式的性質(zhì)通過作差即可得出;(3)利用(2)函數(shù)的單調(diào)性、指數(shù)函數(shù)的單調(diào)性,以及零點存在性定理即可得出m取值范圍【小問1詳解】為奇函數(shù),,即,,整理得,使無意義而舍去)【小問2詳解】由(1),故,設(shè),(a)(b)時,,,,(a)(b),在上時減函數(shù);【小問3詳解】由(2)知,h(x)在上單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性可知在遞增,又∵y=在R上單調(diào)遞增,在遞增,在區(qū)間上只有一個零點,(4)(5)≤0,解得.21、(1)證明過程詳見解析(2)【解析】(1)先證明EF∥D1B,即證EF∥平面ABD1.(2)先證明∠D1BC是異面直線EF與BC所成的角(或所成角的補角),再解三角形求其正弦值.【詳解】(1)證明:連結(jié)BD1,在△DD1B中,E、F分別是D1D、DB的中點,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川江號子課件
- 能源行業(yè)電力工程師面試要點和答案
- 資金分析師筆試題及答案
- SAP-HR-顧問筆試考試題集含答案
- 成都理工大學(xué)2025年12月考核招聘高層次人才(50人)備考筆試題庫及答案解析
- 輸變電工程電氣設(shè)備選型方案
- 制造工程師工業(yè)40面試題含答案
- 南充市經(jīng)濟合作和外事局下屬事業(yè)單位2025年第二批引進高層次人才公開考核招聘崗位調(diào)整備考考試試題及答案解析
- 長城汽車人力資源專員招聘面試問題庫含答案
- 中石化出納崗位面試攻略及答案
- 高校公寓管理述職報告
- HG-T 20583-2020 鋼制化工容器結(jié)構(gòu)設(shè)計規(guī)范
- 單位職工健康體檢總結(jié)報告
- 有序則安之現(xiàn)場定置管理技術(shù)
- V型濾池設(shè)計計算書2021
- 醫(yī)院護理培訓(xùn)課件:《老年患者靜脈輸液的治療與護理》
- 安全用電防止觸電主題教育PPT模板
- LY/T 1690-2017低效林改造技術(shù)規(guī)程
- 通信工程設(shè)計基礎(chǔ)doc資料
- 教師幽默朗誦節(jié)目《我愛上班》
- 流體機械原理:05第四章 泵的汽蝕
評論
0/150
提交評論