湖北省仙桃、天門、潛江三市2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末經(jīng)典試題含解析_第1頁
湖北省仙桃、天門、潛江三市2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末經(jīng)典試題含解析_第2頁
湖北省仙桃、天門、潛江三市2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末經(jīng)典試題含解析_第3頁
湖北省仙桃、天門、潛江三市2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末經(jīng)典試題含解析_第4頁
湖北省仙桃、天門、潛江三市2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省仙桃、天門、潛江三市2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末經(jīng)典試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.?dāng)?shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.282.在平面直角坐標(biāo)系中,已知橢圓的上、下頂點分別為、,左頂點為,左焦點為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.3.已知,是球的球面上兩點,,為該球面上的動點,若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.4.設(shè)命題,,則為().A., B.,C., D.,5.已知橢圓上一點到橢圓一個焦點的距離是3,則點到另一個焦點的距離為()A.9 B.7C.5 D.36.在單調(diào)遞減的等比數(shù)列中,若,,則()A.9 B.3C. D.7.若橢圓與直線交于兩點,過原點與線段AB中點的直線的斜率為,則A. B.C. D.28.已知{}為等比數(shù)列.,則=()A.—4 B.4C.—4或4 D.169.設(shè)雙曲線:的左、右焦點分別為、,P為C上一點,且,,則雙曲線的漸近線方程為()A. B.C. D.10.已知拋物線,為坐標(biāo)原點,以為圓心的圓交拋物線于、兩點,交準線于、兩點,若,,則拋物線方程為()A. B.C. D.11.已知點O為坐標(biāo)原點,拋物線C:的焦點為F,點T在拋物線C的準線上,線段FT與拋物線C的交點為W,,則()A.1 B.C. D.12.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b2二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________14.已知,動點滿足,則點的軌跡方程為___________.15.曲線在x=1處的切線方程為__________.16.中國的西氣東輸工程把西部地區(qū)的資源優(yōu)勢變?yōu)榻?jīng)濟優(yōu)勢,實現(xiàn)了天然氣能源需求與供給的東西部銜接,工程建設(shè)也加快了西部及沿線地區(qū)的經(jīng)濟發(fā)展.輸氣管道工程建設(shè)中,某段管道鋪設(shè)要經(jīng)過一處峽谷,峽谷內(nèi)恰好有一處直角拐角,水平橫向移動輸氣管經(jīng)過此拐角,從寬為的峽谷拐入寬為的峽谷,如圖所示,位于峽谷懸崖壁上兩點,的連線恰好經(jīng)過拐角內(nèi)側(cè)頂點(點,,在同一水平面內(nèi)),設(shè)與較寬側(cè)峽谷懸崖壁所成的角為,則的長為______(用表示).要使輸氣管順利通過拐角,其長度不能低于______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某雙曲線型自然冷卻通風(fēng)塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風(fēng)塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標(biāo)系的基礎(chǔ)上,保持原點和x軸、y軸不變,建立空間直角坐標(biāo)系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標(biāo),并證明此時線段PQ上任意一點都在曲面上.18.(12分)已知拋物線的焦點到準線的距離為2.(1)求C的方程:(2)過C上一動點P作圓兩條切線,切點分別為A,B,求四邊形PAMB面積的最小值.19.(12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點的直線與橢圓相交于、兩點.(1)求橢圓的方程;(2)若以為直徑的圓過坐標(biāo)原點,求的值.20.(12分)直線:和:(1)若兩直線垂直,求m的值;(2)若兩直線平行,求平行線間的距離21.(12分)已知的離心率為,短軸長為2,F(xiàn)為右焦點(1)求橢圓的方程;(2)在x軸上是否存在一點M,使得過F的任意一條直線l與橢圓的兩個交點A,B,恒有,若存在求出M的坐標(biāo),若不存在,說明理由22.(10分)為了保證我國東海油氣田海域海上平臺的生產(chǎn)安全,海事部門在某平臺O的北偏西45°方向km處設(shè)立觀測點A,在平臺O的正東方向12km處設(shè)立觀測點B,規(guī)定經(jīng)過O、A、B三點的圓以及其內(nèi)部區(qū)域為安全預(yù)警區(qū).如圖所示:以O(shè)為坐標(biāo)原點,O的正東方向為x軸正方向,建立平面直角坐標(biāo)系(1)試寫出A,B的坐標(biāo),并求兩個觀測點A,B之間的距離;(2)某日經(jīng)觀測發(fā)現(xiàn),在該平臺O正南10kmC處,有一艘輪船正以每小時km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會進入安全預(yù)警區(qū)?如果不進入,請說明理由;如果進入,則它在安全警示區(qū)內(nèi)會行駛多長時間?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)通項公式及求出,從而求出前8項和.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,則數(shù)列的前8項和為.故選:C2、C【解析】依題意,直線與直線互相垂直,,,故選3、C【解析】當(dāng)平面時,三棱錐體積最大,根據(jù)棱長與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時,三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點睛】關(guān)鍵點點睛:本題考查三棱錐與球的組合體的綜合問題,本題的關(guān)鍵是判斷當(dāng)平面時,三棱錐體積最大.4、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因為命題,,所以為,.故選:B.5、A【解析】根據(jù)橢圓定義求得即可.【詳解】由橢圓定義知,點P到另一個焦點的距離為2×6-3=9.故選:A6、A【解析】利用等比數(shù)列的通項公式可得,結(jié)合條件即求.【詳解】設(shè)等比數(shù)列的公比為,則由,,得,解得或,又單調(diào)遞減,故,.故選:A.7、D【解析】細查題意,把代入橢圓方程,得,整理得出,設(shè)出點的坐標(biāo),由根與系數(shù)的關(guān)系可以推出線段的中點坐標(biāo),再由過原點與線段的中點的直線的斜率為,進而可推導(dǎo)出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設(shè),則,從而線段的中點的橫坐標(biāo)為,縱坐標(biāo),因為過原點與線段中點的直線的斜率為,所以,所以,故選D.【點睛】該題是一道關(guān)于直線與橢圓的綜合性題目,涉及到的知識點有直線與橢圓相交時對應(yīng)的解題策略,中點坐標(biāo)公式,斜率坐標(biāo)公式,屬于簡單題目.8、B【解析】根據(jù)題意先求出公比,進而用等比數(shù)列通項公式求得答案.【詳解】由題意,設(shè)公比為q,則,則.故選:B.9、B【解析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關(guān)系,即可得出答案.【詳解】解:因為在雙曲線中,因為,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.10、C【解析】設(shè)圓的半徑為,根據(jù)已知條件可得出關(guān)于的方程,求出正數(shù)的值,即可得出拋物線的方程.【詳解】設(shè)圓的半徑為,拋物線的準線方程為,由勾股定理可得,因為,將代入拋物線方程得,可得,不妨設(shè)點,則,所以,,解得,因此,拋物線的方程為.故選:C.11、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進行求解即可.【詳解】由已知得:,該拋物線的準線方程為:,所以設(shè),因為,所以,由拋物線的定義可知:,故選:B12、A【解析】利用三次函數(shù)的單調(diào)性,通過其導(dǎo)數(shù)進行研究,求出導(dǎo)數(shù),利用其導(dǎo)數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點睛】可導(dǎo)函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應(yīng)的二次方程的判別式來進行求解.二、填空題:本題共4小題,每小題5分,共20分。13、①.3②.5【解析】根據(jù)莖葉圖進行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.14、【解析】表示出、,根據(jù)題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求切線方程的斜率并求出,再由點斜式寫出切線方程即可.【詳解】由題設(shè),,則,而,所以在x=1處的切線方程為,即.故答案為:.16、①.②.【解析】(1)利用三角關(guān)系分別利用表示、即可求解;(2)利用導(dǎo)數(shù)求最小值的方法即可求解.【詳解】過點分別作,,垂足分別為,,則,在中,,則,同理可得,所以.令,則,令,,得,即,由,解得,當(dāng)時,;當(dāng)時,,所以當(dāng)時,取得極小值,也是最小值,則,故輸氣管的長度不能低于m.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設(shè)雙曲線的標(biāo)準方程為,易知,設(shè),,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設(shè),,利用,即可求解,再利用線段PQ上任意一點的特征證明點在曲面上;【小問1詳解】設(shè)雙曲線的標(biāo)準方程為,由題意知,點,的橫坐標(biāo)分別為,,則設(shè)點,的坐標(biāo)為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點在圓上,;點在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點P、Q,使得P、A、Q三點共線.由點在半徑為的圓上,(為參數(shù));點在半徑為的圓上,(為參數(shù));由已知得,整理得兩式平方求和得,則或當(dāng)時,,當(dāng)時,證明:,則,利用,,其中又曲面上的每一點可以是圓與旋轉(zhuǎn)任意坐標(biāo)系上的雙曲線的交點,旋轉(zhuǎn)直角坐標(biāo)系,保持原點和y軸不變,點所在的軸為軸,此時,滿足,即即點是曲面上的點.18、(1)(2)【解析】(1)根據(jù)拋物線方程求出交點坐標(biāo)和準線方程,求出p即可;(2)設(shè),利用兩點坐標(biāo)求距離公式求出,根據(jù)四邊形PAMB的面積得到關(guān)于的二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】因為C的焦點為,準線為,由題意得,即,因此.【小問2詳解】圓M的圓心為,半徑為1.由條件可知,,且,于是.設(shè),則.當(dāng)時等號成立,所以四邊形PAMB面積的最小值為.19、(1);(2)【解析】(1)由離心率得到,由橢圓的短軸端點與雙曲線的焦點重合,得到,進而可求出結(jié)果;(2)先由題意,得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,設(shè),根據(jù)韋達定理,得到,,再由以為直徑的圓過坐標(biāo)原點,得到,進而可求出結(jié)果.詳解】(1)由題意知,∴,即,又雙曲線的焦點坐標(biāo)為,橢圓的短軸端點與雙曲線的焦點重合,所以,∴,故橢圓的方程為.(2)解:由題意知直線的斜率存在,設(shè)直線的方程為由得:由得:設(shè),則,,∴因為以為直徑的圓過坐標(biāo)原點,所以,.滿足條件故.【點睛】本題主要考查橢圓的方程,以及橢圓的應(yīng)用,熟記橢圓的標(biāo)準方程,以及橢圓的簡單性質(zhì)即可,解決此類問題時,通常需要聯(lián)立直線與橢圓方程,結(jié)合韋達定理、判別式等求解,屬于常考題型.20、(1);(2)【解析】(1)由直線一般方程的垂直公式,即得解;(2)由直線一般方程的平行公式,求得,再由平行線的距離公式,即得解.【小問1詳解】∵兩直線垂直,∴,解得【小問2詳解】∵兩直線平行,∴,解得或1,經(jīng)過驗證時兩條直線重合,舍去.∴可得:直線:,:∴兩直線間的距離21、(1);(2)存在點M滿足條件,點M的坐標(biāo)為.【解析】(1)根據(jù)給定條件直接計算出即可求解作答.(2)假定存在點,當(dāng)直線l與x軸不重合時,設(shè)出l的方程,與橢圓C的方程聯(lián)立,借助、斜率互為相反數(shù)計算得解,再驗證直線l與x軸重合的情況即可作答.【小問1詳解】依題意,,而離心率,即,解得,所以橢圓C的方程為:.【小問2詳解】由(1)知,,假定存在點滿足條件,當(dāng)直線與x軸不重合時,設(shè)l的方程為:,由消去x并整理得:,設(shè),則有,因,則直線、斜率互為相反數(shù),于是得:,整理得,即,則有,即,而m為任意實數(shù),則,當(dāng)直線l與x軸重合時,點A,B為橢圓長軸的兩個端點,點也滿足,所以存在點M滿足條件,點M的坐標(biāo)為.【點睛】思路點睛:解答直線與橢圓相交的問題,常把直線與橢圓的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論