西藏省重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第1頁(yè)
西藏省重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第2頁(yè)
西藏省重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第3頁(yè)
西藏省重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第4頁(yè)
西藏省重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

西藏省重點(diǎn)中學(xué)2026屆高二上數(shù)學(xué)期末預(yù)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象如圖所示,則函數(shù)的圖象可能是A. B.C. D.2.設(shè)點(diǎn)P是函數(shù)圖象上任意一點(diǎn),點(diǎn)Q的坐標(biāo),當(dāng)取得最小值時(shí)圓C:上恰有2個(gè)點(diǎn)到直線的距離為1,則實(shí)數(shù)r的取值范圍為()A. B.C. D.3.某班進(jìn)行了一次數(shù)學(xué)測(cè)試,全班學(xué)生的成績(jī)都落在區(qū)間內(nèi),其成績(jī)的頻率分布直方圖如圖所示,若該班學(xué)生這次數(shù)學(xué)測(cè)試成績(jī)的中位數(shù)的估計(jì)值為,則的值為()A. B.C. D.4.七巧板是一種古老的中國(guó)傳統(tǒng)智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學(xué)用七巧板拼成了一個(gè)“鴿子”形狀,若從“鴿子”身上任取一點(diǎn),則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.5.觀察數(shù)列,(),,()的特點(diǎn),則括號(hào)中應(yīng)填入的適當(dāng)?shù)臄?shù)為()A. B.C. D.6.過(guò)原點(diǎn)O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A. B.C. D.7.如圖,在三棱錐中,,,,點(diǎn)在平面內(nèi),且,設(shè)異面直線與所成角為,則的最大值為()A. B.C. D.8.設(shè)兩個(gè)變量與之間具有線性相關(guān)關(guān)系,相關(guān)系數(shù)為,回歸方程為,那么必有()A.與符號(hào)相同 B.與符號(hào)相同C.與符號(hào)相反 D.與符號(hào)相反9.已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則的值為()A. B.C. D.10.?dāng)?shù)列滿(mǎn)足,且,是函數(shù)的極值點(diǎn),則的值是()A.2 B.3C.4 D.511.如圖,在長(zhǎng)方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.12.在中,a,b,c分別為角A,B,C的對(duì)邊,已知,,的面積為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓方程為,左、右焦點(diǎn)分別為、,P為橢圓上的動(dòng)點(diǎn),若的最大值為,則橢圓的離心率為_(kāi)__________.14.已知等差數(shù)列的前n項(xiàng)和為,,,則______15.若,且數(shù)列是嚴(yán)格遞增數(shù)列或嚴(yán)格遞減數(shù)列,則實(shí)數(shù)a取值范圍是______16.若存在實(shí)常數(shù)k和b,使得函數(shù)F(x)和G(x)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿(mǎn)足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱(chēng)此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命題:①F(x)=f(x)﹣g(x)內(nèi)單調(diào)遞增;②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];④f(x)和h(x)之間存在唯一的“隔離直線”y=2x﹣e其中真命題為_(kāi)____(請(qǐng)?zhí)钏姓_命題的序號(hào))三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,過(guò)點(diǎn)且傾斜角為的直線與曲線(為參數(shù))交于兩點(diǎn).(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求長(zhǎng).18.(12分)已知命題p:“,”為假命題,命題q:“實(shí)數(shù)滿(mǎn)足”.若是真命題,是假命題,求的取值范圍19.(12分)已知三棱柱中,,,平面ABC,,E為AB中點(diǎn),D為上一點(diǎn)(1)求證:;(2)當(dāng)D為中點(diǎn)時(shí),求平面ADC與平面所成角的正弦值20.(12分)在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),且離心率.(1)求橢圓的方程;(2)直線的斜率為,直線l與橢圓交于兩點(diǎn),求的面積的最大值.21.(12分)設(shè)函數(shù).(1)求在處的切線方程;(2)求的極小值點(diǎn)和極大值點(diǎn).22.(10分)已知在平面直角坐標(biāo)系中,圓A:的圓心為A,過(guò)點(diǎn)B(,0)任作直線l交圓A于點(diǎn)C、D,過(guò)點(diǎn)B作與AD平行的直線交AC于點(diǎn)E.(1)求動(dòng)點(diǎn)E的軌跡方程;(2)設(shè)動(dòng)點(diǎn)E的軌跡與y軸正半軸交于點(diǎn)P,過(guò)點(diǎn)P且斜率為k1,k2的兩直線交動(dòng)點(diǎn)E的軌跡于M、N兩點(diǎn)(異于點(diǎn)P),若,證明:直線MN過(guò)定點(diǎn).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】原函數(shù)先減再增,再減再增,且位于增區(qū)間內(nèi),因此選D【名師點(diǎn)睛】本題主要考查導(dǎo)數(shù)圖象與原函數(shù)圖象的關(guān)系:若導(dǎo)函數(shù)圖象與軸的交點(diǎn)為,且圖象在兩側(cè)附近連續(xù)分布于軸上下方,則為原函數(shù)單調(diào)性的拐點(diǎn),運(yùn)用導(dǎo)數(shù)知識(shí)來(lái)討論函數(shù)單調(diào)性時(shí),由導(dǎo)函數(shù)的正負(fù),得出原函數(shù)的單調(diào)區(qū)間2、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結(jié)合得到取得最小值時(shí)a的值,得到圓心C,利用點(diǎn)到直線距離求出圓心C到直線的距離,數(shù)形結(jié)合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點(diǎn)P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因?yàn)镼的坐標(biāo)為,則在直線,過(guò)點(diǎn)A作⊥l于點(diǎn),與半圓交于點(diǎn),此時(shí)長(zhǎng)為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個(gè)點(diǎn)到直線的距離為1,則.故選:C3、A【解析】根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個(gè)量的值,即可求得結(jié)果.【詳解】由題意有,得,又由,得,解得,,有故選:A.4、C【解析】設(shè)正方形邊長(zhǎng)為1,求出七巧板中“4”這一塊的面積,然后計(jì)算概率【詳解】設(shè)正方形邊長(zhǎng)為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長(zhǎng)為,面積為,所以概率為故選:C5、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項(xiàng)公式為,∴.故選:D6、A【解析】直線AC、BD與坐標(biāo)軸重合時(shí)求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對(duì)角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個(gè)頂點(diǎn)為橢圓頂點(diǎn)時(shí),而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時(shí),設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時(shí)取“=”,而,所以四邊形ABCD面積最小值為.故選:A7、D【解析】設(shè)線段的中點(diǎn)為,連接,過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),證明出平面,然后以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè),其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設(shè)線段的中點(diǎn)為,連接,,為的中點(diǎn),則,,則,,同理可得,,,平面,過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)?,所以,為等邊三角形,故為的中點(diǎn),平面,平面,則,,,平面,以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,因?yàn)槭沁呴L(zhǎng)為的等邊三角形,為的中點(diǎn),則,則、、、,由于點(diǎn)在平面內(nèi),可設(shè),其中,且,從而,因?yàn)?,則,所以,,故當(dāng)時(shí),有最大值,即,故,即有最大值,所以,.故選:D.【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對(duì)應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過(guò)計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.8、A【解析】利用相關(guān)系數(shù)的性質(zhì),分析即得解【詳解】相關(guān)系數(shù)r為正,表示正相關(guān),回歸直線方程上升,r為負(fù),表示負(fù)相關(guān),回歸直線方程下降,與r的符號(hào)相同故選:A9、B【解析】根據(jù)題意得到得到答案.【詳解】橢圓焦點(diǎn)在軸上,且,故.故選:B.10、C【解析】利用導(dǎo)數(shù)即可求出函數(shù)的極值點(diǎn),再利用等差數(shù)列的性質(zhì)及其對(duì)數(shù)的運(yùn)算性質(zhì)求解即可【詳解】由,得,因?yàn)椋呛瘮?shù)的極值點(diǎn),所以,是方程兩個(gè)實(shí)根,所以,因?yàn)閿?shù)列滿(mǎn)足,所以,所以數(shù)列為等差數(shù)列,所以,所以,故選:C11、D【解析】根據(jù)長(zhǎng)方體中,異面直線和所成角即為直線和所成角,再結(jié)合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長(zhǎng)方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.12、C【解析】利用面積公式,求出,進(jìn)而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因?yàn)榈拿娣e為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用橢圓的定義結(jié)合余弦定理可求得,再利用公式可求得該橢圓的離心率的值.【詳解】由橢圓的定義可得,由余弦定理可得,因?yàn)榈淖畲笾禐?,則,可得,因此,該橢圓的離心率為.故答案為:.14、-1【解析】由已知及等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式,列方程求基本量即可.【詳解】若公差為,則,可得.故答案為:.15、【解析】根據(jù)數(shù)列遞增和遞減的定義求出實(shí)數(shù)a的取值范圍.【詳解】因?yàn)閿?shù)列是嚴(yán)格遞增數(shù)列或嚴(yán)格遞減數(shù)列,所以.若數(shù)列是嚴(yán)格遞增數(shù)列,則,即,即恒成立,故;若數(shù)列是嚴(yán)格遞減數(shù)列,則,即,即恒成立,由,故;綜上,實(shí)數(shù)a的取值范圍是故答案為:16、①②④【解析】①求出F(x)=f(x)﹣g(x)的導(dǎo)數(shù),檢驗(yàn)在x∈(,0)內(nèi)的導(dǎo)數(shù)符號(hào),即可判斷;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,x2≥kx+b對(duì)一切實(shí)數(shù)x成立,即有△1≤0,又kx+b對(duì)一切x<0成立,△2≤0,k≤0,b≤0,根據(jù)不等式的性質(zhì),求出k,b的范圍,即可判斷②③;④存在f(x)和g(x)的隔離直線,那么該直線過(guò)這個(gè)公共點(diǎn),設(shè)隔離直線的斜率為k.則隔離直線,構(gòu)造函數(shù),求出函數(shù)函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)求出函數(shù)的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F(xiàn)′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)內(nèi)單調(diào)遞增,故①對(duì);②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對(duì)一切實(shí)數(shù)x成立,即有△1≤0,k2+4b≤0,又kx+b對(duì)一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k?﹣4≤k≤0,同理?﹣4≤b≤0,故②對(duì),③錯(cuò);④函數(shù)f(x)和h(x)的圖象在x處有公共點(diǎn),因此存在f(x)和g(x)的隔離直線,那么該直線過(guò)這個(gè)公共點(diǎn),設(shè)隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0當(dāng)x∈R恒成立,則△≤0,只有k=2,此時(shí)直線方程為:y=2x﹣e,下面證明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),當(dāng)x時(shí),G′(x)=0,當(dāng)0<x時(shí),G′(x)<0,當(dāng)x時(shí),G′(x)>0,則當(dāng)x時(shí),G(x)取到極小值,極小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,則g(x)≤2x﹣e,當(dāng)x>0時(shí)恒成立∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2x﹣e,故④正確故答案為:①②④【點(diǎn)睛】本題以命題的真假判斷與應(yīng)用為載體,考查新定義,關(guān)鍵是對(duì)新定義的理解,考查函數(shù)的求導(dǎo),利用導(dǎo)數(shù)求最值,屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長(zhǎng)即可.【詳解】(1)因?yàn)榍€(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.18、或【解析】先假設(shè)命題、為真,分別求得實(shí)數(shù)的取值范圍,再由命題、具體的真假,取實(shí)數(shù)的取值范圍或其補(bǔ)集,最終確定實(shí)數(shù)的取值范圍.【詳解】若命題p為真,則“,”為假命題則,恒成立∴恒成立,即∴,∴.若命題q為真,則,即∴∴∵是真命題,是假命題∴命題、必為一真一假.①當(dāng)p真q假時(shí),∴;②當(dāng)p假q真時(shí),∴.綜上所述:a的取值范圍是或.19、(1)證明見(jiàn)解析;(2).【解析】(1)利用線面垂直的性質(zhì)定理及線面垂直的判定定理即證;(2)利用坐標(biāo)法即求.【小問(wèn)1詳解】∵,E為AB中點(diǎn),∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小問(wèn)2詳解】以C點(diǎn)為坐標(biāo)原點(diǎn),CA,CB,分別為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè),則平面的法向量為,設(shè)平面ADC法向量為,則,∴,即,令,則∴平面ADC與平面所成角的余弦值為,所以平面ADC與平面所成角的正弦值.20、(1);(2)2.【解析】(1)由離心率,得到,再由點(diǎn)在橢圓上,得到,聯(lián)立求得,即可求得橢圓的方程.(2)設(shè)的方程為,聯(lián)立方程組,根據(jù)根系數(shù)的關(guān)系和弦長(zhǎng)公式,以及點(diǎn)到直線的距離公式,求得,結(jié)合基本不等式,即可求解.【詳解】(1)由題意,橢圓的離心率,即,可得,又橢圓過(guò)點(diǎn),可得,將代入,可得,故橢圓方程為.(2)設(shè)的方程為,設(shè)點(diǎn),聯(lián)立方程組,消去y整理,得,所以,又直線與橢圓相交,所以,解得,則,點(diǎn)P到直線的距離,所以,當(dāng)且僅當(dāng),即時(shí),的面積取得最大值為2.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程的求解、及直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用,解答此類(lèi)題目,通常聯(lián)立直線方程與橢圓方程,應(yīng)用一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解,此類(lèi)問(wèn)題易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)解,能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問(wèn)題解決問(wèn)題的能力等.21、(1);(2)極大值點(diǎn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論