內(nèi)蒙古赤峰市、呼和浩特市2025-2026學年數(shù)學高二第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
內(nèi)蒙古赤峰市、呼和浩特市2025-2026學年數(shù)學高二第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
內(nèi)蒙古赤峰市、呼和浩特市2025-2026學年數(shù)學高二第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
內(nèi)蒙古赤峰市、呼和浩特市2025-2026學年數(shù)學高二第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
內(nèi)蒙古赤峰市、呼和浩特市2025-2026學年數(shù)學高二第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古赤峰市、呼和浩特市2025-2026學年數(shù)學高二第一學期期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的對稱軸為坐標軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或2.計算復(fù)數(shù):()A. B.C. D.3.展開式中第3項的二項式系數(shù)為()A.6 B.C.24 D.4.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.5.已知函數(shù),在定義域內(nèi)任取一點,則使的概率是()A. B.C. D.6.已知,,,則的大小關(guān)系是()A. B.C. D.7.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺8.年底以來,我國多次在重要場合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正負抵消,實現(xiàn)二氧化碳“零排放”.二氧化碳的分子是由一個碳原子和兩個氧原子構(gòu)成的,其結(jié)構(gòu)式為.已知氧有、、三種天然同位素,碳有、、三種天然同位素,則由上述同位素可構(gòu)成的不同二氧化碳分子共有()A.種 B.種C.種 D.種9.氣象臺正南方向的一臺風中心,正向北偏東30°方向移動,移動速度為,距臺風中心以內(nèi)的地區(qū)都將受到影響,若臺風中心的這種移動趨勢不變,氣象臺所在地受到臺風影響持續(xù)時間大約是()A. B.C. D.10.劉徽是一個偉大的數(shù)學家,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的數(shù)學遺產(chǎn),他所提出的割圓術(shù)可以估算圓周率π,理論上能把π的值計算到任意精度.割圓術(shù)的第一步是求圓的內(nèi)接正六邊形的面積.若在圓內(nèi)隨機取一點,則此點取自該圓內(nèi)接正六邊形的概率是()A. B.C. D.11.已知直線和平面,且在上,不在上,則下列判斷錯誤的是()A.若,則存在無數(shù)條直線,使得B.若,則存在無數(shù)條直線,使得C.若存在無數(shù)條直線,使得,則D.若存在無數(shù)條直線,使得,則12.已知數(shù)列滿足,,.設(shè),若對于,都有恒成立,則最大值為A.3 B.4C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓的焦點在軸上,過點作圓的切線,切點分別為,,直線恰好經(jīng)過橢圓的上焦點和右頂點,則橢圓的方程是________________14.設(shè)命題:,,則為______.15.若直線是曲線的切線,也是曲線的切線,則__________16.如圖,在直三棱柱中,,為中點,則平面與平面夾角的正切值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.18.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為6.(1)求拋物線的方程;(2)若不過原點的直線與拋物線交于A、B兩點,且,求證:直線過定點并求出定點坐標.19.(12分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項和20.(12分)已知橢圓:經(jīng)過點,設(shè)右焦點F,橢圓上存在點Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過點的直線與橢圓交于D,G兩點.是否存在直線使得以DG為直徑的圓過點E(-1,0)?若存在,求出直線的方程,若不存在,說明理由.21.(12分)已知橢圓的離心率為,橢圓過點.(1)求橢圓C的方程;(2)過點的直線交橢圓于M、N兩點,已知直線MA,NA分別交直線于點P,Q,求的值.22.(10分)如圖,在長方體中,,,,M為上一點,且(1)求點到平面的距離;(2)求二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分雙曲線的焦點在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點在軸上,則有,則雙曲線的離心率為;若焦點在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點睛】本題考查雙曲線離心率的求解,在雙曲線的焦點位置不確定的情況下,要對雙曲線的焦點位置進行分類討論,考查計算能力,屬于基礎(chǔ)題.2、D【解析】直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡可得結(jié)論.【詳解】故選:D.3、A【解析】根據(jù)二項展開式的通項公式,即可求解.【詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數(shù)為.故選:A.4、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F(xiàn)三點共線時,最小,再結(jié)合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A5、A【解析】解不等式,根據(jù)與長度有關(guān)的幾何概型即可求解.【詳解】由題意得,即,由幾何概型得,在定義域內(nèi)任取一點,使的概率是.故選:A.6、B【解析】利用微積分基本定理計算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:7、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設(shè)冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A8、C【解析】分兩種情況討論:兩個氧原子相同、兩個氧原子不同,分別計算出兩種情況下二氧化碳分子的個數(shù),利用分類加法計數(shù)原理可得結(jié)果.【詳解】分以下兩種情況討論:若兩個氧原子相同,此時二氧化碳分子共有種;若兩個氧原子不同,此時二氧化碳分子共有種.由分類加法計數(shù)原理可知,由上述同位素可構(gòu)成的不同二氧化碳分子共有種.故選:C.9、D【解析】利用余弦定理進行求解即可.【詳解】如圖所示:設(shè)臺風中心為,,小時后到達點處,即,當時,氣象臺所在地受到臺風影響,由余弦定理可知:,于是有:,解得:,所以氣象臺所在地受到臺風影響持續(xù)時間大約是,故選:D10、B【解析】此點取自該圓內(nèi)接正六邊形的概率是正六邊形面積除以圓的面積,分別求出即可.【詳解】如圖,在單位圓中作其內(nèi)接正六邊形,該正六邊形是六個邊長等于半徑的正三角形,其面積,圓的面積為則所求概率.故選:B【點睛】此題考查幾何概率模型求解,關(guān)鍵在于準確求出正六邊形的面積和圓的面積.11、D【解析】根據(jù)直線和直線,直線和平面的位置關(guān)系依次判斷每一個選項得到答案.【詳解】若,則平行于過的平面與的交線,當時,,則存在無數(shù)條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數(shù)條直線,使得,B正確;若存在無數(shù)條直線,使得,,,則,C正確;當時,存在無數(shù)條直線,使得,D錯誤.故選:D.12、A【解析】整理數(shù)列的通項公式有:,結(jié)合可得數(shù)列是首項為,公比為的等比數(shù)列,則,,原問題即:恒成立,當時,,即>3,綜上可得:的最大值為3.本題選擇A選項點睛:數(shù)列的遞推關(guān)系是給出數(shù)列的一種方法,根據(jù)給出的初始值和遞推關(guān)系可以依次寫出這個數(shù)列的各項,由遞推關(guān)系求數(shù)列的通項公式,常用的方法有:①求出數(shù)列的前幾項,再歸納猜想出數(shù)列的一個通項公式;②將已知遞推關(guān)系式整理、變形,變成等差、等比數(shù)列,或用累加法、累乘法、迭代法求通項二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)過點的圓的切線為,分類討論求得直線分別與圓的切線,求得直線的方程,從而得到直線與軸、軸的交點坐標,得到橢圓的右焦點和上頂點,進而求得橢圓的方程.【詳解】設(shè)過點的圓的切線分別為,即,當直線與軸垂直時,不存在,直線方程為,恰好與圓相切于點;當直線與軸不垂直時,原點到直線的距離為,解得,此時直線的方程為,此時直線與圓相切于點,因此,直線的斜率為,直線的方程為,所以直線交軸交于點,交于軸于點,橢圓的右焦點為,上頂點為,所以,可得,所以橢圓的標準方程為.故答案為:.14、,【解析】由全稱命題的否定即可得到答案【詳解】根據(jù)全稱命題的否定,可得為,【點睛】本題考查了含有量詞的命題否定,屬于基礎(chǔ)題15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合待定系數(shù)法進行求解即可.【詳解】設(shè)曲線的切點為:,由,所以過該切點的切線斜率為:,于切線方程為:,因此有:,設(shè)曲線的切點為:,由,所以過該切點的切線斜率為:,于是切線方程為:,因此有:,因為,,即,因此,故答案為:【點睛】關(guān)鍵點睛:根據(jù)導(dǎo)數(shù)的幾何意義進行求解是解題的關(guān)鍵.16、【解析】由條件可得均為等腰直角三角形,從而,先證明平面,從而,即得到為平面與平面夾角的平面角,從而可求解.【詳解】由,則,則在直三棱柱中,平面,又平面,則又,所以平面平面,所以由由條件可得均為等腰直角三角形,則所以,即,由所以平面,又平面所以,即為平面與平面夾角的平面角.在直角中,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標系,不妨設(shè),則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設(shè)為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設(shè)平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為18、(1)(2)證明見解析,定點坐標為(8,0).【解析】(1)根據(jù)拋物線的定義,即可求出結(jié)果;(2)由題意直線方程可設(shè)為,將其與拋物線方程聯(lián)立,再將轉(zhuǎn)化為,根據(jù)韋達定理,化簡求解,即可求出定點.【小問1詳解】解:拋物線的頂點在原點,焦點在軸上,且拋物線上有一點,設(shè)拋物線的方程為,到焦點的距離為6,即有點到準線的距離為6,即解得,即拋物線的標準方程為;【小問2詳解】證明:由題意知直線不能與軸平行,故直線方程可設(shè)為,與拋物線聯(lián)立得,消去得,設(shè),則,則,,由,可得,所以,即,亦即,又,解得,所以直線方程為,易得直線過定點.19、(1)見解析;(2)【解析】(1)利用定義法證明是一個與n無關(guān)的非零常數(shù),從而得出結(jié)論;(2)由(1)求出,利用分組求和法求【詳解】(1)由得,所以,所以是首項為,公比為的等比數(shù)列,,所以,(2)由(1)知的通項公式為;則所以【點睛】本題主要考查等比數(shù)列的證明以及分組求和法,屬于基礎(chǔ)題20、(1);(2)存在,或.【解析】(1)根據(jù)題意,列出的方程組,求得,則橢圓方程得解;(2)對直線的斜率進行討論,當斜率存在時,設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達定理,轉(zhuǎn)化題意為,求解即可.小問1詳解】由題意,得,設(shè),將代入橢圓方程,得,所以,解得,所以橢圓的方程為.【小問2詳解】當斜率不存在時,即時,,為橢圓短軸兩端點,則以為直徑的圓為,恒過點,滿足題意;當斜率存在時,設(shè),,,由得:,,解得:,,若以為直徑的圓過點,則,即,又,,,解得:,滿足,即,此時直線的方程為綜上,存在直線使得以為直徑的圓過點,的方程為或21、(1)(2)1【解析】(1)由題意得到關(guān)于a,b的方程組,求解方程組即可確定橢圓方程;(2)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點P,Q的縱坐標,將線段長度的比值轉(zhuǎn)化為縱坐標比值的問題,進一步結(jié)合韋達定理可證得,從而可得兩線段長度的比值.【小問1詳解】由題意,點橢圓上,有,解得故橢圓C的方程為.【小問2詳解】當直線l的斜率不存在時,顯然不符;當直線l的斜率存在時,設(shè)直線l為:聯(lián)立方程得:由,設(shè),有又由直線AM:,令x=-4得,將代入得:,同理得:.很明顯,且,注意到,,而,故所以.【點睛】本題考查求橢圓的方程,解題關(guān)鍵是利用離心率與橢圓上的點,找到關(guān)于a,b,c的等量關(guān)系求解a與b.本題中直線方程代入橢圓方程整理后應(yīng)用韋達定理求出,.表示出,,然后轉(zhuǎn)化為相應(yīng)的比值關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論