版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省文山州硯山縣一中2026屆高二數(shù)學第一學期期末達標檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若命題“對任意,使得成立”是真命題,則實數(shù)a的取值范圍是()A. B.C. D.2.雙曲線的左、右焦點分別為、,點P在雙曲線右支上,,,則C的離心率為()A. B.2C. D.3.音樂與數(shù)學有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼?,得到“微”,“微”?jīng)過一次“益”,頻率變?yōu)樵瓉淼模玫健吧獭薄来艘?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列4.拋物線的焦點到其準線的距離是()A.4 B.3C.2 D.15.設是數(shù)列的前項和,已知,則數(shù)列()A.是等比數(shù)列,但不是等差數(shù)列 B.是等差數(shù)列,但不是等比數(shù)列C.是等比數(shù)列,也是等差數(shù)列 D.既不是等差數(shù)列,也不是等比數(shù)列6.命題“,”的否定為()A., B.,C., D.,7.如圖,在三棱錐中,,則三棱錐外接球的表面積是()A. B.C. D.8.“”是“直線和直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.為了調(diào)查全國人口的壽命,抽查了11個?。ㄊ校┑?500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個體C.樣本 D.樣本容量10.已知數(shù)列是首項為,公差為1的等差數(shù)列,數(shù)列滿足.若對任意的,都有成立,則實數(shù)的取值范圍是()A., B.C., D.11.函數(shù)的最大值為()A.32 B.27C.16 D.4012.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.81二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線方程為______.14.已知拋物線:()的焦點到準線的距離為4,過點的直線與拋物線交于,兩點,若,則______15.若關(guān)于的不等式恒成立,則實數(shù)的取值范圍是______.16.已知圓,過點作圓O的切線,則切線方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和為,且(1)求數(shù)列的通項公式;(2)若,數(shù)列的前n項和為,求的值18.(12分)已知直線.(1)若,求直線與直線的交點坐標;(2)若直線與直線垂直,求a的值.19.(12分)已知橢圓的離心率為,且其左頂點到右焦點的距離為.(1)求橢圓的方程;(2)設點、在橢圓上,以線段為直徑的圓過原點,試問是否存在定點,使得到直線的距離為定值?若存在,請求出點坐標;若不存在,請說理由.20.(12分)如圖,在正方體中,,分別為棱,的中點(1)求證:直線平面;(2)求異面直線與所成角的余弦值21.(12分)已知對于,函數(shù)有意義,關(guān)于k的不等式成立.(1)若為假命題,求k的取值范圍;(2)若p是q的必要不充分條件,求m的取值范圍.22.(10分)橢圓的左右焦點分別為,,焦距為,為原點.橢圓上任意一點到,距離之和為.(1)求橢圓的標準方程;(2)過點的斜率為2的直線交橢圓于、兩點,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題得對任意恒成立,求出的最大值即可.【詳解】解:由題得對任意恒成立,(當且僅當時等號成立)所以故選:A2、C【解析】由,所以為直角三角形,根據(jù)雙曲線的定義結(jié)合勾股定理可得答案.【詳解】由,所以為直角三角形.,根據(jù)雙曲線的定義可得所以,即,即,所以故選:C3、C【解析】根據(jù)文化知識,分別求出相對應的頻率,即可判斷出結(jié)果【詳解】設“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點睛】本題考查等比數(shù)列的定義,考查學生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題4、C【解析】由拋物線焦點到準線的距離為求解即可.【詳解】因為拋物線焦點到準線的距離為,故拋物線的焦點到其準線的距離是2.故選:C【點睛】本題主要考查了拋物線的標準方程中的幾何意義,屬于基礎(chǔ)題型.5、B【解析】根據(jù)與的關(guān)系求出通項,然后可知答案.【詳解】當時,,當時,,綜上,的通項公式為,數(shù)列為等差數(shù)列同理,由等比數(shù)列定義可判斷數(shù)列不是等比數(shù)列.故選:B6、A【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,”是全稱量詞命題,所以其否定是存在量詞命題,即為,,故選:A7、A【解析】根據(jù)題意,將該幾何體放置于正方體中截得,進而轉(zhuǎn)化為求邊長為2的正方體的外接球,再求解即可.【詳解】解:因為在三棱錐中,,所以將三棱錐補形成正方體如圖所示,正方體的邊長為2,則體對角線長為,外接球的半徑為,所以外接球的表面積為,故選:.8、A【解析】因為直線和直線垂直,所以或,再根據(jù)充分必要條件的定義判斷得解.【詳解】因為“直線和直線垂直,所以或.當時,直線和直線垂直;當直線和直線垂直時,不一定成立.所以是直線和直線垂直的充分不必要條件,故選:A9、C【解析】由樣本的概念即知.【詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.10、D【解析】由等差數(shù)列通項公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:11、A【解析】利用導數(shù)即可求解.【詳解】因為,所以當時,;當時,.所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞增,,因此,的最大值為.故選:A12、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出函數(shù)的導函數(shù),然后結(jié)合導數(shù)的幾何意義求解即可.【詳解】解:由,得,則,即當時,,所以切線方程為:,故答案為:.【點睛】本題考查了曲線在某點處的切線方程的求法,屬基礎(chǔ)題.14、15【解析】易得拋物線方程為,根據(jù),求得點P的坐標,進而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因為拋物線的焦點到準線的距離為4,所以,則拋物線:,設點的坐標為,的坐標為,因為,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:1515、【解析】設由題可知,當時,可得適合題意,當時,可求函數(shù)的最小值即得,當時不合題意,即得.【詳解】設,由題可知,∴,當時,,適合題意,所以,當時,令,則,此時時,,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當時,時,,,故的值有正有負,不合題意;綜上,實數(shù)的取值范圍是.故答案為:.【點睛】關(guān)鍵點點睛:本題考查不等式恒成立求參數(shù)的取值范圍,設由題可知,當時,利用導數(shù)可求函數(shù)的最小值,結(jié)合,可得,進而通過解,即得.16、或【解析】首先判斷點圓位置關(guān)系,再設切線方程并聯(lián)立圓的方程,根據(jù)所得方程求參數(shù)k,即可寫出切線方程.【詳解】由題設,,故在圓外,根據(jù)圓及,知:過作圓O的切線斜率一定存在,∴可設切線為,聯(lián)立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定的遞推公式結(jié)合“當時,”探求相鄰兩項的關(guān)系計算作答.(2)由(1)的結(jié)論求出,再利用裂項相消法求出,即可作答.【小問1詳解】依題意,,,則當時,,于是得:,即,而當時,,即有,因此,,,所以數(shù)列是以2為首項,2為公比的等比數(shù)列,,所以數(shù)列的通項公式是.【小問2詳解】由(1)知,,從而有,所以.18、(1)(2)【解析】(1)聯(lián)立兩直線方程,解方程組即可得解;(2)根據(jù)兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當時,直線,聯(lián)立,解得,即交點坐標為;【小問2詳解】解:直線與直線垂直,則,解得.19、(1);(2)存在,.【解析】(1)由題設可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對稱性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設,,再由條件,得,從而得,再利用點到直線的距離公式可求得結(jié)果【詳解】(1)由題設可知解得,,,所以橢圓的方程為:;(2)設,,①若直線與軸垂直,由對稱性可知,將點代入橢圓方程,解得,原點到該直線的距離;②若直線不與軸垂直,設直線的方程為,由消去得,則由條件,即,由韋達定理得,整理得,則原點到該直線的距離;故存在定點,使得到直線的距離為定值.20、(1)證明見解析;(2).【解析】(1)證明,則,可證明,由平面,可得,再由線面垂直的判定定理即可求證;(2)連結(jié),可知,所以或其補角即為異面直線與所成的角,在中由余弦定理計算的值即可求解.【小問1詳解】在正方形中,,分別為棱,的中點,則,,,所以,則,所以,即,又因為平面,面,所以,因為,所以平面【小問2詳解】連結(jié),,可知,所以或其補角即為異面直線與所成的角,令,則,,,在中,由余弦定理可得:,故異面直線與所成角的余弦值為.21、(1)(2)【解析】(1)由與的真假相反,得出為真命題,將定義域問題轉(zhuǎn)化為不等式的恒成立問題,討論參數(shù)的取值,得出答案;(2)由必要不充分條件的定義得出,討論的取值結(jié)合包含關(guān)系得出的范圍.【詳解】解:(1)因為為假命題,所以為真命題,所以對恒成立.當時,不符合題意;當時,則有,則.綜上,k的取值范圍為.(2)由,得.由(1)知,當為真命題時,則令令因為p是q的必要不充分條件,所以當時,,,解得當時,,符合題意;當時,,符合題意;所以的取值范圍是【點睛】本題主要考查了不等式的恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 21558-2025建筑絕熱用硬質(zhì)聚氨酯泡沫塑料
- 五年級上冊數(shù)學期末考試卷及答案
- 衛(wèi)生法規(guī)試題及答案
- 北京警察學院《光學》2024 - 2025 學年第一學期期末試卷
- 小小動物園寫人的作文
- 2026年手術(shù)室內(nèi)鏡清洗消毒規(guī)范實訓
- 鋼結(jié)構(gòu)測量定位技術(shù)方法
- 低碳混凝土生產(chǎn)技術(shù)要點
- 于河池市第三人民醫(yī)院放療中心建設項目(輻射類)環(huán)境影響報告表
- 難點詳解人教版八年級數(shù)學上冊第十五章分式專題訓練試卷(解析版含答案)
- 2025年警務交通技術(shù)專業(yè)任職資格副高級職稱考試題庫及答案
- 腎囊腫病人的護理
- 房產(chǎn)評估年終工作總結(jié)
- 2025至2030全球及中國大腦訓練軟件行業(yè)項目調(diào)研及市場前景預測評估報告
- 欽州農(nóng)業(yè)無人車項目商業(yè)計劃書
- (2025版)顱內(nèi)動脈粥樣硬化性狹窄診治指南
- 2025年海管水平定向鉆穿越方案研究
- 攝影家協(xié)會作品評選打分細則
- 電子產(chǎn)品三維建模設計細則
- 2025年中國道路交通毫米波雷達市場研究報告
- 設計交付:10kV及以下配網(wǎng)工程的標準與實踐
評論
0/150
提交評論