版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年統(tǒng)計(jì)師《統(tǒng)計(jì)學(xué)》真題及答案考試時(shí)間:______分鐘總分:______分姓名:______一、單項(xiàng)選擇題(本大題共15小題,每小題1分,共15分。下列每小題備選答案中,只有一項(xiàng)是符合題目要求的。)1.統(tǒng)計(jì)學(xué)研究的對(duì)象是()。A.抽象的數(shù)字B.現(xiàn)象總體的數(shù)量特征和數(shù)量關(guān)系C.個(gè)別事物的具體數(shù)量D.現(xiàn)象的性質(zhì)2.對(duì)10個(gè)城市的居民消費(fèi)水平進(jìn)行調(diào)查,這種調(diào)查方式是()。A.普查B.重點(diǎn)調(diào)查C.抽樣調(diào)查D.典型調(diào)查3.標(biāo)志按其變異情況劃分,可劃分為()。A.品質(zhì)標(biāo)志和數(shù)量標(biāo)志B.可控標(biāo)志和不可控標(biāo)志C.質(zhì)量標(biāo)志和數(shù)量標(biāo)志D.核心標(biāo)志和輔助標(biāo)志4.下面屬于時(shí)期指標(biāo)的是()。A.人口數(shù)B.土地面積C.工業(yè)總產(chǎn)值D.職工人數(shù)5.計(jì)算平均指標(biāo)時(shí),如果各組的權(quán)數(shù)相等,則()。A.加權(quán)算術(shù)平均數(shù)等于簡(jiǎn)單算術(shù)平均數(shù)B.加權(quán)調(diào)和平均數(shù)等于簡(jiǎn)單調(diào)和平均數(shù)C.加權(quán)幾何平均數(shù)等于簡(jiǎn)單幾何平均數(shù)D.中位數(shù)等于眾數(shù)6.變異系數(shù)是()。A.絕對(duì)指標(biāo)B.相對(duì)指標(biāo)C.平均指標(biāo)D.總量指標(biāo)7.已知變量x與y的相關(guān)系數(shù)r=0.9,則變量x與y之間()。A.相關(guān)性較弱B.相關(guān)性較強(qiáng)C.不相關(guān)D.負(fù)相關(guān)8.在其他條件不變的情況下,樣本單位數(shù)增大,抽樣平均誤差()。A.增大B.減小C.不變D.可能增大也可能減小9.樣本指標(biāo)和總體指標(biāo)()。A.可以相互轉(zhuǎn)化B.完全相同C.可以相互代替D.沒(méi)有任何聯(lián)系10.在大樣本條件下,總體均值μ的1-α置信區(qū)間為(x-t/2(n-1)s/n,x+t/2(n-1)s/n),其中x表示()。A.樣本方差B.總體方差C.樣本均值D.總體均值11.假設(shè)檢驗(yàn)中,犯第一類(lèi)錯(cuò)誤的概率記作α,犯第二類(lèi)錯(cuò)誤的概率記作β,則()。A.α+β=1B.α+β<1C.α+β>1D.α+β只受樣本量影響12.在單因素方差分析中,若要檢驗(yàn)因素A對(duì)結(jié)果是否有顯著影響,應(yīng)檢驗(yàn)的假設(shè)是()。A.H0:σ12=σ22=...=σk2B.H0:μ1=μ2=...=μkC.H0:x?1=x?2=...=x?kD.H0:σ1=σ2=...=σk13.設(shè)二元線性回歸方程為y?=a+bx,其中b的經(jīng)濟(jì)含義是()。A.當(dāng)x不變時(shí),y的平均變化量B.當(dāng)y不變時(shí),x的平均變化量C.x每變化一個(gè)單位,y的平均變化量D.y每變化一個(gè)單位,x的平均變化量14.某商場(chǎng)連續(xù)四個(gè)月的銷(xiāo)售額分別為100萬(wàn)元、120萬(wàn)元、110萬(wàn)元、130萬(wàn)元,若要計(jì)算四個(gè)月的平均發(fā)展速度,應(yīng)采用()。A.簡(jiǎn)單算術(shù)平均法B.加權(quán)算術(shù)平均法C.幾何平均法D.移動(dòng)平均法15.某地區(qū)2023年糧食產(chǎn)量比2022年增長(zhǎng)了5%,人口增長(zhǎng)了2%,則該地區(qū)2023年人均糧食產(chǎn)量()。A.增長(zhǎng)了7%B.增長(zhǎng)了3%C.減少了3%D.無(wú)法判斷二、簡(jiǎn)答題(本大題共4小題,每小題5分,共20分。)16.簡(jiǎn)述標(biāo)志變異指標(biāo)的作用。17.簡(jiǎn)述參數(shù)估計(jì)的兩種基本方法及其特點(diǎn)。18.簡(jiǎn)述假設(shè)檢驗(yàn)中顯著性水平α的意義。19.簡(jiǎn)述相關(guān)分析與回歸分析的區(qū)別與聯(lián)系。三、計(jì)算題(本大題共3小題,每小題10分,共30分。)20.某班級(jí)40名學(xué)生的身高(單位:cm)數(shù)據(jù)如下:168,170,165,175,160,170,172,168,165,170,173,169,166,174,171,169,168,172,167,170,176,164,171,170,168,173,165,169,172,166,174,170,168,175,167,169,171,170。要求:(1)計(jì)算該班級(jí)學(xué)生身高的均值、中位數(shù)和眾數(shù)。(2)計(jì)算該班級(jí)學(xué)生身高的標(biāo)準(zhǔn)差和變異系數(shù)。21.從某廠生產(chǎn)的燈泡中隨機(jī)抽取100只進(jìn)行壽命測(cè)試,得知燈泡的平均壽命為1500小時(shí),標(biāo)準(zhǔn)差為200小時(shí)。假設(shè)燈泡壽命服從正態(tài)分布。要求:(1)計(jì)算該廠燈泡平均壽命的95%置信區(qū)間(已知t0.025(99)≈1.984)。(2)如果要求置信度為95%,估計(jì)該廠燈泡平均壽命的抽樣極限誤差不超過(guò)50小時(shí),至少應(yīng)抽取多少只燈泡進(jìn)行測(cè)試?22.某公司為了研究廣告投入(x,單位:萬(wàn)元)與銷(xiāo)售額(y,單位:萬(wàn)元)之間的關(guān)系,收集了10組數(shù)據(jù),并計(jì)算出如下結(jié)果:n=10,Σx=65,Σy=780,Σx2=485,Σy2=60544,Σxy=5115。要求:(1)建立y對(duì)x的線性回歸方程。(2)計(jì)算回歸系數(shù)b的標(biāo)準(zhǔn)誤差Se(b)(需先計(jì)算SSE)。四、綜合應(yīng)用題(本大題共2小題,每小題12分,共24分。)23.某農(nóng)場(chǎng)為了比較三種不同肥料(A,B,C)對(duì)小麥產(chǎn)量的影響,選取了條件相似的4塊土地進(jìn)行試驗(yàn),每塊土地施用一種肥料,得到的小麥產(chǎn)量(單位:kg)如下:肥料A:98,96,99,95肥料B:104,102,103,101肥料C:97,93,96,95假設(shè)小麥產(chǎn)量服從正態(tài)分布,且方差相等。要求:檢驗(yàn)三種不同肥料對(duì)小麥產(chǎn)量是否有顯著差異(α=0.05)。24.某商店經(jīng)理想要了解顧客的年齡(x,單位:歲)與其月消費(fèi)額(y,單位:元)之間是否存在線性關(guān)系。他隨機(jī)抽取了30名顧客的數(shù)據(jù)進(jìn)行分析,得到線性回歸方程為y?=200+30x。同時(shí),計(jì)算得到回歸平方和SSR=54000,殘差平方和SSE=36000。要求:(1)計(jì)算回歸系數(shù)b的標(biāo)準(zhǔn)誤差Se(b)。(2)計(jì)算判定系數(shù)R2,并解釋其意義。(3)當(dāng)某顧客年齡為35歲時(shí),預(yù)測(cè)其月消費(fèi)額,并給出95%的預(yù)測(cè)區(qū)間(需計(jì)算預(yù)測(cè)標(biāo)準(zhǔn)誤差Spred)。試卷答案一、單項(xiàng)選擇題1.B解析:統(tǒng)計(jì)學(xué)研究的是客觀現(xiàn)象的數(shù)量方面,即現(xiàn)象總體的數(shù)量特征和數(shù)量關(guān)系。2.C解析:抽樣調(diào)查是從總體中按隨機(jī)原則抽取部分單位進(jìn)行調(diào)查,用以推斷總體特征。10個(gè)城市是樣本,調(diào)查方式屬于抽樣調(diào)查。3.A解析:標(biāo)志是構(gòu)成統(tǒng)計(jì)總體的每個(gè)單位所共同具有的某種特征或?qū)傩?,按其變異情況劃分,可分為品質(zhì)標(biāo)志(表現(xiàn)事物的屬性,不能量化)和數(shù)量標(biāo)志(表現(xiàn)事物的數(shù)量特征,可以量化)。4.C解析:時(shí)期指標(biāo)是反映現(xiàn)象在一段時(shí)間內(nèi)累計(jì)總量的指標(biāo),其數(shù)值隨時(shí)間長(zhǎng)短而變動(dòng),如工業(yè)總產(chǎn)值、銷(xiāo)售收入等。人口數(shù)、土地面積、職工人數(shù)屬于時(shí)點(diǎn)指標(biāo)。5.A解析:當(dāng)各組權(quán)數(shù)相等(w1=w2=...=wn=1)時(shí),加權(quán)算術(shù)平均數(shù)(Σxw/Σw)就等于簡(jiǎn)單算術(shù)平均數(shù)(Σx/n)。6.B解析:變異系數(shù)(如標(biāo)準(zhǔn)差系數(shù)、極差系數(shù)等)是衡量數(shù)據(jù)離散程度的相對(duì)指標(biāo),通常以百分比表示。7.B解析:相關(guān)系數(shù)r的絕對(duì)值越接近1,表示相關(guān)關(guān)系越強(qiáng)。r=0.9表示變量x與y之間存在較強(qiáng)的正相關(guān)關(guān)系。8.B解析:抽樣平均誤差的大小與樣本單位數(shù)n成反比,n越大,抽樣平均誤差越小。9.A解析:樣本指標(biāo)是根據(jù)樣本數(shù)據(jù)計(jì)算的統(tǒng)計(jì)量,總體指標(biāo)是根據(jù)總體數(shù)據(jù)計(jì)算的參數(shù)。在某些情況下,可以用樣本指標(biāo)來(lái)估計(jì)或推斷總體指標(biāo),它們可以在一定條件下相互轉(zhuǎn)化。10.C解析:在點(diǎn)估計(jì)的置信區(qū)間公式中,x代表樣本均值。11.B解析:犯第一類(lèi)錯(cuò)誤(α)是當(dāng)原假設(shè)H0為真時(shí)拒絕H0的概率;犯第二類(lèi)錯(cuò)誤(β)是當(dāng)原假設(shè)H0為假時(shí)接受H0的概率。α+β不一定等于1,它們的大小受樣本量、顯著性水平等因素影響。12.B解析:?jiǎn)我蛩胤讲罘治龅暮诵氖菣z驗(yàn)k個(gè)總體均值μ1,μ2,...,μk是否相等,即檢驗(yàn)假設(shè)H0:μ1=μ2=...=μk。13.C解析:在回歸方程y?=a+bx中,b稱(chēng)為回歸系數(shù),表示自變量x每變化一個(gè)單位時(shí),因變量y的平均變化量。14.C解析:計(jì)算平均發(fā)展速度通常使用幾何平均法,因?yàn)闀r(shí)間序列中的各期發(fā)展水平是相乘的關(guān)系。15.B解析:根據(jù)指數(shù)體系,人均糧食產(chǎn)量的增長(zhǎng)率約等于糧食產(chǎn)量增長(zhǎng)率減去人口增長(zhǎng)率,即5%-2%=3%。二、簡(jiǎn)答題16.變異指標(biāo)的作用在于:(1)衡量數(shù)據(jù)離散程度或差異大小,反映數(shù)據(jù)分布的集中或分散狀況。(2)反映現(xiàn)象變動(dòng)的程度和趨勢(shì)。(3)是進(jìn)行統(tǒng)計(jì)推斷(如估計(jì)、檢驗(yàn))的重要依據(jù),較小的變異有利于提高估計(jì)的準(zhǔn)確性和檢驗(yàn)的功效。(4)是衡量平均指標(biāo)代表性的重要尺度,變異指標(biāo)越大,平均指標(biāo)的代表性越差。17.參數(shù)估計(jì)的兩種基本方法是:(1)點(diǎn)估計(jì):用樣本統(tǒng)計(jì)量(如樣本均值x?、樣本方差s2)的某個(gè)具體數(shù)值直接作為總體參數(shù)(如總體均值μ、總體方差σ2)的估計(jì)值。特點(diǎn)是計(jì)算簡(jiǎn)單、結(jié)果明確,但未考慮抽樣誤差,無(wú)法給出估計(jì)的精確程度。(2)區(qū)間估計(jì):根據(jù)樣本統(tǒng)計(jì)量構(gòu)造一個(gè)區(qū)間,以一定的置信水平(1-α)斷定該區(qū)間包含總體參數(shù)真值的可能性。特點(diǎn)是能給出估計(jì)的精確程度(置信區(qū)間長(zhǎng)度)和把握程度(置信水平),但結(jié)果是一個(gè)范圍,不夠精確。18.假設(shè)檢驗(yàn)中顯著性水平α的意義是:α是指在原假設(shè)H0為真的情況下,錯(cuò)誤地拒絕H0(即犯第一類(lèi)錯(cuò)誤)的概率。它體現(xiàn)了對(duì)原假設(shè)的拒絕態(tài)度或檢驗(yàn)的嚴(yán)格程度。α越小,拒絕原假設(shè)的要求越嚴(yán)格,越不容易犯第一類(lèi)錯(cuò)誤,但可能增大犯第二類(lèi)錯(cuò)誤(β)的概率。19.相關(guān)分析與回歸分析的區(qū)別與聯(lián)系:區(qū)別:(1)目的不同:相關(guān)分析旨在揭示變量之間是否存在相關(guān)關(guān)系以及關(guān)系的密切程度和方向;回歸分析旨在建立變量之間的函數(shù)關(guān)系模型,用于預(yù)測(cè)或解釋變量間的變動(dòng)關(guān)系。(2)關(guān)系不同:相關(guān)分析研究的是變量間相互依賴(lài)、共同變動(dòng)的程度,不區(qū)分自變量和因變量;回歸分析要明確區(qū)分自變量和因變量,研究自變量對(duì)因變量的影響。(3)結(jié)果不同:相關(guān)分析的結(jié)果是相關(guān)系數(shù),其取值范圍在-1到1之間;回歸分析的結(jié)果是回歸方程,描述了變量間的定量關(guān)系。聯(lián)系:(1)相關(guān)分析是回歸分析的基礎(chǔ)和前提,只有變量間存在顯著相關(guān)關(guān)系,才考慮進(jìn)行回歸分析。(2)回歸分析可以用來(lái)解釋相關(guān)關(guān)系,例如,通過(guò)回歸系數(shù)可以判斷相關(guān)關(guān)系的方向和強(qiáng)度。(3)兩者都是研究變量間關(guān)系的重要統(tǒng)計(jì)方法,常常結(jié)合使用。三、計(jì)算題20.解:(1)均值x?=(Σx)/n=(168+170+...+170)/40=6780/40=169.5cm排序后找中位數(shù):中位數(shù)x?=(x(n/2)+x(n/2+1))/2=(169+170)/2=169.5cm眾數(shù):出現(xiàn)次數(shù)最多的是170cm,眾數(shù)M0=170cm(2)標(biāo)準(zhǔn)差s=√[Σ(x-x?)2/(n-1)]=√[(168-169.5)2+(170-169.5)2+...+(170-169.5)2/39]=√[(-1.5)2+(0.5)2+...+(0.5)2/39]=√[(22.5+4.5+...+4.5)/39]=√[(22.5+4.5*38)/39]=√[(22.5+171)/39]=√[193.5/39]=√4.9359≈2.22cm變異系數(shù)CV=s/|x?|=2.22/169.5≈0.0131或1.31%21.解:(1)已知x?=1500,s=200,n=100,1-α=95%,t0.025(99)≈1.984(或使用z0.025=1.96)總體方差未知但樣本量n=100較大,可用樣本方差s2代替,或直接用z分布。95%置信區(qū)間=(x?-zα/2*s/√n,x?+zα/2*s/√n)=(1500-1.984*200/√100,1500+1.984*200/√100)=(1500-1.984*20,1500+1.984*20)=(1500-39.68,1500+39.68)=(1460.32,1539.68)小時(shí)(2)抽樣極限誤差δ=zα/2*s/√n(這里用z分布)要求δ≤501.96*200/√n≤50392/√n≤50√n≥392/50√n≥7.84n≥7.842n≥61.4656因?yàn)閚必須是整數(shù),且要滿(mǎn)足條件,所以至少應(yīng)抽取62只燈泡。22.解:(1)計(jì)算回歸系數(shù)b和截距a:b=[nΣxy-ΣxΣy]/[nΣx2-(Σx)2]=[10*5115-65*780]/[10*485-652]=[51150-50700]/[4850-4225]=450/625=0.72a=y?-b*x?(其中y?=Σy/n=780/10=78,x?=Σx/n=65/10=6.5)=78-0.72*6.5=78-4.68=73.32y對(duì)x的線性回歸方程為:y?=73.32+0.72x(2)計(jì)算SSE和Se(b):首先計(jì)算各個(gè)y的預(yù)測(cè)值y?i和殘差ei=yi-y?i:|x|y|y?|ei|ei2||-----|-----|------|------|-------||6.5|75|76.02|-1.02|1.0404||6.8|80|77.44|2.56|6.5536||7.2|84|78.84|5.16|26.6256||7.5|83|80.16|2.84|8.0656||8.0|88|81.48|6.52|42.5004||8.5|92|82.8|9.2|84.64||8.8|93|83.12|9.88|97.7104||9.0|96|83.92|12.08|146.0592||9.5|98|85.32|12.68|161.0224||10.0|105|86.72|18.28|334.1584|Σei2=SSE=898.856b=0.72b的標(biāo)準(zhǔn)誤差Se(b)=√[SSE/(n-2)]/√[Σ(x-x?)2/(n-1)]需要計(jì)算Σ(x-x?)2:Σ(x-x?)2=[(6.5-6.5)2+(6.8-6.5)2+...+(10.0-6.5)2]/(n-1)=[0+0.09+...+12.25]/9=[0+0.09+0.49+1.21+3.24+5.76+7.84+10.89+18.49+12.25]/9=59.1/9≈6.5667Se(b)=√[898.856/(10-2)]/√6.5667=√[898.856/8]/√6.5667=√112.357/√6.5667=10.6017/2.5651≈4.13623.解:(1)計(jì)算各組的均值:x?A=(98+96+99+95)/4=388/4=97x?B=(104+102+103+101)/4=410/4=102.5x?C=(97+93+96+95)/4=381/4=95.25總樣本量n=12總均值x?=(Σxi+Σxj+Σxk)/n=(388+410+381)/12=1179/12=98.25(2)計(jì)算總離差平方和SST、組內(nèi)離差平方和SSW、組間離差平方和SSE:SST=Σ(xi-x?)2+Σ(xj-x?)2+Σ(xk-x?)2=[(98-98.25)2+(96-98.25)2+...+(95-98.25)2]=[(-0.25)2+(-2.25)2+...+(-3.25)2]=[0.0625+5.0625+4.9+9.025+0.0625+3.0625+5.0625+4.9+18.0625+6.25+11.0225+9.025]=81.525SSW=ΣΣ(xij-x?j)2+ΣΣ(xik-x?k)2(其中xij為A組的第i個(gè)觀測(cè)值,x?j為A組的均值,以此類(lèi)推)=[(98-97)2+(96-97)2+(99-97)2+(95-97)2]+[(104-102.5)2+(102-102.5)2+(103-102.5)2+(101-102.5)2]+[(97-95.25)2+(93-95.25)2+(96-95.25)2+(95-95.25)2]=[1+1+4+4]+[2.25+0.25+0.25+2.25]+[3.0625+5.0625+0.5625+0.0625]=10+5+8.75=23.75SSE=SST-SSW=81.525-23.75=57.775(注:SSE也可以通過(guò)計(jì)算每個(gè)組的SSE然后求和得到,但這里用SST-SSW更直接)(3)計(jì)算組間均方MSB和組內(nèi)均方MSE:MSB=SSE/(k-1)=57.775/(3-1)=57.775/2=28.8875MSE=SSW/(n-k)=23.75/(12-3)=23.75/9≈2.6389(此處MSE也可以用組內(nèi)均值方差計(jì)算,結(jié)果應(yīng)一致)(4)計(jì)算F統(tǒng)計(jì)量:F=MSB/MSE=28.8875/2.6389≈10.935(5)查F分布表或使用統(tǒng)計(jì)軟件判斷:查F(2,9)分布表,α=0.05時(shí)的臨界值F0.05(2,9)≈4.26由于計(jì)算得到的F=10.935>F0.05(2,9)=4.26,拒絕原假設(shè)H0。結(jié)論:在α=0.05的顯著性水平下,有足夠的證據(jù)表明三種不同肥料對(duì)小麥產(chǎn)量有顯著差異。24.解:(1)回歸系數(shù)b的標(biāo)準(zhǔn)誤差Se(b)=√[SSE/(n-2)]/√[Σ(x-x?)2/(n-1)]已知SSE=36000,n=30,回歸方程y?=200+30xb=30需要計(jì)算Σ(x-x?)2:Σ(x-x?)2=Σ
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030文化創(chuàng)意產(chǎn)品品牌建設(shè)現(xiàn)狀與市場(chǎng)營(yíng)銷(xiāo)策略及產(chǎn)業(yè)化發(fā)展?jié)摿μ轿鰣?bào)告
- 2025-2030文化創(chuàng)意產(chǎn)業(yè)園區(qū)運(yùn)營(yíng)模式創(chuàng)新?tīng)I(yíng)商環(huán)境評(píng)估深度方案
- 2025-2030文化體育職業(yè)體育聯(lián)賽運(yùn)營(yíng)和轉(zhuǎn)播權(quán)銷(xiāo)售
- 2025-2030文具辦公用品行業(yè)市場(chǎng)發(fā)展分析競(jìng)爭(zhēng)投資評(píng)估規(guī)劃研究報(bào)告
- 2025-2030挪威漁業(yè)資源開(kāi)發(fā)行業(yè)市場(chǎng)供需關(guān)系及行業(yè)前景評(píng)估報(bào)告
- 2025-2030挪威海洋資源開(kāi)發(fā)產(chǎn)業(yè)鏈現(xiàn)狀分析及可持續(xù)發(fā)展的能源產(chǎn)業(yè)鏈優(yōu)化研究
- 2025-2030挪威海洋漁業(yè)市場(chǎng)供需分析與發(fā)展趨勢(shì)評(píng)估規(guī)劃研究報(bào)告
- 2025-2030挪威海洋工程裝備制造業(yè)市場(chǎng)現(xiàn)狀分析供需及投資評(píng)估規(guī)劃發(fā)展報(bào)告
- 2025-2030挪威海洋工程行業(yè)發(fā)展趨勢(shì)研究及技術(shù)創(chuàng)新方向
- 2025-2030挪威海上風(fēng)電行業(yè)市場(chǎng)應(yīng)用現(xiàn)狀討論及能源發(fā)展趨勢(shì)與產(chǎn)業(yè)前景性研判報(bào)告冊(cè)
- 消費(fèi)類(lèi)半固態(tài)電池項(xiàng)目可行性研究報(bào)告
- 溝槽開(kāi)挖應(yīng)急預(yù)案
- DBJ04∕T 398-2019 電動(dòng)汽車(chē)充電基礎(chǔ)設(shè)施技術(shù)標(biāo)準(zhǔn)
- 山東省濟(jì)南市2024年1月高二上學(xué)期學(xué)情期末檢測(cè)英語(yǔ)試題含解析
- 口腔門(mén)診醫(yī)療質(zhì)控培訓(xùn)
- (正式版)JBT 9229-2024 剪叉式升降工作平臺(tái)
- HGT4134-2022 工業(yè)聚乙二醇PEG
- 小學(xué)教職工代表大會(huì)提案表
- ESC2023年心臟起搏器和心臟再同步治療指南解讀
- 《泰坦尼克號(hào)》拉片分析
- 基層版胸痛中心建設(shè)標(biāo)準(zhǔn)課件
評(píng)論
0/150
提交評(píng)論