版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州市贛源中學2026屆高一數(shù)學第一學期期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點,,,則的面積為()A.5 B.6C.7 D.82.函數(shù)零點所在區(qū)間為A. B.C. D.3.設,則的大小關系為()A. B.C. D.4.等邊三角形ABC的邊長為1,則()A. B.C. D.5.函數(shù)f(x)=|x3|?ln的圖象大致為()A. B.C. D.6.一個正三棱柱的三視圖如圖所示,則這個三棱柱的表面積為()A. B.C. D.7.已知一組數(shù)據(jù)為20,30,40,50,50,50,70,80,其平均數(shù)、第60百分位數(shù)和眾數(shù)的大小關系是()A.平均數(shù)=第60百分位數(shù)>眾數(shù) B.平均數(shù)<第60百分位數(shù)=眾數(shù)C.第60百分位數(shù)=眾數(shù)<平均數(shù) D.平均數(shù)=第60百分位數(shù)=眾數(shù)8.已知在海中一孤島的周圍有兩個觀察站,且觀察站在島的正北5海里處,觀察站在島的正西方.現(xiàn)在海面上有一船,在點測得其在南偏西60°方向相距4海里處,在點測得其在北偏西30°方向,則兩個觀察站與的距離為A. B.C. D.9.下列函數(shù)是奇函數(shù)且在定義域內(nèi)是增函數(shù)的是()A. B.C. D.10.已知函數(shù)的單調(diào)區(qū)間是,那么函數(shù)在區(qū)間上()A.當時,有最小值無最大值 B.當時,無最小值有最大值C.當時,有最小值無最大值 D.當時,無最小值也無最大值二、填空題:本大題共6小題,每小題5分,共30分。11.如果滿足對任意實數(shù),都有成立,那么a的取值范圍是______12.冪函數(shù)的圖象經(jīng)過點,則________13.命題“,”的否定是______14.等于_______.15.滿足的集合的個數(shù)是______________16.已知函數(shù),是定義在區(qū)間上的奇函數(shù),則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),函數(shù)的最小正周期為.(1)求函數(shù)的解析式,及當時,的值域;(2)當時,總有,使得,求實數(shù)m的取值范圍.18.已知向量,.(1)求的值;(2)若向量滿足,,求向量的坐標.19.已知為角終邊上的一點(1)求的值(2)求的值20.如圖,彈簧掛著的小球做上下振動,它在(單位:)時相對于平衡位置(靜止時的位置)的高度(單位:)由關系式確定,其中,,.在一次振動中,小球從最高點運動至最低點所用時間為.且最高點與最低點間的距離為(1)求小球相對平衡位置高度(單位:)和時間(單位:)之間的函數(shù)關系;(2)小球在內(nèi)經(jīng)過最高點的次數(shù)恰為50次,求的取值范圍21.甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎.問:購買該商品的顧客在哪家商場中獎的可能性大?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】設AB邊上的高為h,則S△ABC=|AB|·h,根據(jù)兩點的距離公式求得|AB|,而AB邊上的高h就是點C到直線AB的距離,由點到直線的距離公式可求得選項【詳解】設AB邊上的高為h,則S△ABC=|AB|·h,而|AB|=,AB邊上的高h就是點C到直線AB的距離AB邊所在的直線方程為,即x+y-4=0.點C到直線x+y-4=0的距離為,因此,S△ABC=×2×=5.故選:A2、C【解析】利用零點存在性定理計算,由此求得函數(shù)零點所在區(qū)間.【詳解】依題意可知在上為增函數(shù),且,,,所以函數(shù)零點在區(qū)間.故選C.【點睛】本小題主要考查零點存在性定理的運用,屬于基礎題.3、D【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),即可得出的大小關系.【詳解】因為,,,所以.故選:D.【點睛】本題考查的是有關指數(shù)冪和對數(shù)值的比較大小問題,在解題的過程中,注意應用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,確定其對應值的范圍.比較指對冪形式的數(shù)的大小關系,常用方法:(1)利用指數(shù)函數(shù)的單調(diào)性:,當時,函數(shù)遞增;當時,函數(shù)遞減;(2)利用對數(shù)函數(shù)的單調(diào)性:,當時,函數(shù)遞增;當時,函數(shù)遞減;(3)借助于中間值,例如:0或1等.4、A【解析】直接利用向量的數(shù)量積定義進行運算,即可得到答案;詳解】,故選:A5、A【解析】判斷函數(shù)的奇偶性和對稱性,利用特殊點的函數(shù)值是否對應進行排除即可【詳解】f(-x)=|x3|?ln=-|x3|?ln=-f(x),則函數(shù)f(x)是奇函數(shù),圖象關于原點對稱,排除B,D,f()=ln=ln<0,排除C,故選A【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)奇偶性和特殊值進行排除是解決本題的關鍵6、D【解析】由三視圖可知,該正三棱柱的底面是邊長為2cm的正三角形,高為2cm,根據(jù)面積公式計算可得結果.【詳解】正三棱柱如圖,有,,三棱柱的表面積為.故選:D【點睛】本題考查了根據(jù)三視圖求表面積,考查了正三棱柱結構特征,屬于基礎題.7、B【解析】從數(shù)據(jù)為20,30,40,50,50,50,70,80中計算出平均數(shù)、第60百分位數(shù)和眾數(shù),進行比較即可.【詳解】解:平均數(shù)為,,第5個數(shù)50即為第60百分位數(shù).又眾數(shù)為50,它們的大小關系是平均數(shù)第60百分位數(shù)眾數(shù).故選:B.8、D【解析】畫出如下示意圖由題意可得,,又,所以A,B,C,D四點共圓,且AC為直徑、在中,,由余弦定理得,∴∴(其中為圓的半徑).選D9、B【解析】根據(jù)指數(shù)函數(shù)、正切函數(shù)的性質(zhì),結合奇函數(shù)和單調(diào)性的性質(zhì)進行逐一判斷即可.【詳解】A:當時,,所以該函數(shù)不是奇函數(shù),不符合題意;B:由,設,因為,所以該函數(shù)是奇函數(shù),,函數(shù)是上的增函數(shù),所以函數(shù)是上的增函數(shù),因此符合題意;C:當時,,當時,,顯然不符合增函數(shù)的性質(zhì),故不符合題意;D:當時,,顯然不符合增函數(shù)的性質(zhì),故不符合題意,故選:B10、D【解析】依題意不等式的解集為(1,+∞),即可得到且,即,再根據(jù)二次函數(shù)的性質(zhì)計算在區(qū)間(-1,2)上的單調(diào)性及取值范圍,即可得到函數(shù)的最值情況【詳解】因為函數(shù)的單調(diào)區(qū)間是,即不等式的解集為(1,+∞),所以且,即,所以,當時,在上滿足,故此時為增函數(shù),既無最大值也無最小值,由此A,B錯誤;當時,在上滿足,此時為減函數(shù),既無最大值也無最小值,故C錯誤,D正確,故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題中條件先確定函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性求解參數(shù)的取值范圍.【詳解】由對任意實數(shù)都成立可知,函數(shù)為實數(shù)集上的單調(diào)減函數(shù).所以解得.故答案為.12、【解析】設冪函數(shù)的解析式,然后代入求解析式,計算.【詳解】設,則,解得,所以,得故答案為:13、.【解析】全稱命題的否定:將任意改為存在并否定原結論,即可知原命題的否定.【詳解】由全稱命題的否定為特稱命題,所以原命題的否定:.故答案為:.14、【解析】直接利用誘導公式即可求解.【詳解】由誘導公式得:.故答案為:.15、4【解析】利用集合的子集個數(shù)公式求解即可.【詳解】∵,∴集合是集合的子集,∴集合的個數(shù)為,故答案為:.16、27【解析】由于奇函數(shù)的定義域必然關于原點對稱,可得m的值,再求【詳解】由于奇函數(shù)的定義域必然關于原點對稱∴m=3,故f(m)=故答案為27【點睛】本題主要考查函數(shù)的奇偶性,利用了奇函數(shù)的定義域必然關于原點對稱,屬于基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),值域為(2)【解析】(1)由正弦函數(shù)的周期求得得解析式,利用正弦函數(shù)的性質(zhì)可得函數(shù)值域;(2)利用時,的值域是集合的子集,分類討論求得的最大值和最小值,得出不等關系,從而得出結論【小問1詳解】,.因為,所以,所以的值域為.【小問2詳解】當時,總有,使得,即時,函數(shù)的值域是的子集,即當時,.函數(shù),其對稱軸,開口向上.當時,即,可得,,所以,解得;當即時,在上單調(diào)遞減,在上單調(diào)遞增;所以,所以.當時,即,可得,,所以,此時無解.綜上可得實數(shù)m的取值范圍為.18、(1)7;(2).【解析】(1)先計算,再求模即可;(2)設,進而計算,,再根據(jù)垂直與共線的坐標關系求解即可.【詳解】解:(1)因為向量,,所以,所以(2)設,,因為,,所以,解得所以19、(1);(2)【解析】分析:(1)直接利用三角函數(shù)的坐標定義求的值.(2)先求的值,再求的值.詳解:(1)由題得(2)∵在第一象限,∴∴點睛:(1)本題主要考查三角函數(shù)坐標定義和同角的三角函數(shù)關系,意在考查學生對這些基礎知識的掌握水平和基本的運算能力.(2)點p(x,y)是角終邊上的任意的一點(原點除外),r代表點到原點的距離,則sin=cos=tan=.20、(1),;(2)【解析】(1)首先根據(jù)題意得到,,從而得到,(2)根據(jù)題意,當時,小球第一次到達最高點,從而得到,再根據(jù)周期為,即可得到.【詳解】(1)因為小球振動過程中最高點與最低點的距離為,所以因為在一次振動中,小球從最高點運動至最低點所用時間為,所以周期為2,即,所以所以,(2)由題意,當時,小球第一次到達最高點,以后每隔一個周期都出現(xiàn)一次最高點,因為小球在內(nèi)經(jīng)過最高點的次數(shù)恰為50次,所以因為,所以,所以的取值范圍為(注:的取值范圍不考慮開閉)21、乙商場中獎的可能性大.【解析】分別計算兩種方案中獎的概率.先
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆河南省濮陽市臺前一高數(shù)學高二上期末學業(yè)水平測試模擬試題含解析
- 內(nèi)鄉(xiāng)介紹教學課件
- 烘焙培訓機構的管理制度(3篇)
- 美術功能室管理制度小學(3篇)
- 轉運司機的閉環(huán)管理制度(3篇)
- 采樣儀器維護和管理制度(3篇)
- 中學學生社團活動成果展示制度
- 養(yǎng)老院消毒隔離制度
- 企業(yè)企業(yè)文化與團隊建設制度
- 2026湖南邵陽市邵東市人才引進62人參考題庫附答案
- 2026年伊春職業(yè)學院單招綜合素質(zhì)考試必刷測試卷及答案1套
- 焦化廠儀表工崗位考試試卷及答案
- 餐廳充值服務合同范本
- 2025年汽車洗滌器總成行業(yè)分析報告及未來發(fā)展趨勢預測
- 麻疹知識培訓內(nèi)容總結
- 2025年事業(yè)單位招聘考試綜合類專業(yè)知識試題(體育)
- 高考語文強基試卷及答案
- 安全生產(chǎn)責任保險培訓課件
- 機械工程的奧秘之旅-揭秘機械工程的魅力與價值
- 2025年國家公務員考試公共基礎知識模擬試卷及答案(共五套)
- 雨污分流監(jiān)理工作總結報告
評論
0/150
提交評論