版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AIGovernanceAlliance
IncollaborationwithAccenture
TransformationofIndustriesintheAgeofAI
ArtificialIntelligence’s
EnergyParadox:BalancingChallengesandOpportunities
WHITEPAPERJANUARY2025
Images:GettyImages
Contents
Readingguide3
Foreword4
Executivesummary
5
Introduction6
1ElectricityconsumptionofAI
7
1.1TheAIlifecycle
7
1.2Theroleofdatacentres
8
1.3OpportunitiestoreduceAIsystemelectricityconsumption
9
2AI-enabledenergytransition
11
2
.1Non-exhaustiveexampleopportunitiesforAI-enabled11
electricityreduction
2
.2Sampleusecases
12
3
Primarychallengesandecosystemenablers14
3.1Infrastructurechallenges
14
3.2Environmentalchallenges14
3.3Overviewofecosystemenablers15
3.4Regulatoryandpolicyenablers16
3.5Financialincentiveenablers16
3.6Technologicalinnovationenablers17
3.7Marketdevelopmentenablers17
4
FutureoutlookofAIenergyimpact18
4.1Thedeploymentandcollaborationlandscape18
4.2AIandenergy–2024to2025outlook22
Conclusion23
Contributors
24
Endnotes
26
Disclaimer
ThisdocumentispublishedbytheWorldEconomicForum
asacontributiontoaproject,insightareaorinteraction.The
findings,interpretationsandconclusionsexpressedhereinare
aresultofacollaborativeprocessfacilitatedandendorsedby
theWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northe
entiretyofitsMembers,Partnersorotherstakeholders.
?2025WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinany
formorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities2
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities3
Readingguide
TheWorldEconomicForum’sAITransformationofIndustriesinitiativeseekstocatalyseresponsible
industrytransformationbyexploringthestrategic
implications,opportunitiesandchallengesof
promotingartificialintelligence(AI)-driveninnovationacrossbusinessandoperatingmodels.
ThiswhitepaperseriesexploresthetransformativeroleofAIacrossindustries.Itprovidesinsights
throughbothbroadanalysesandin-depth
explorationsofindustry-specificandregionaldeepdives.Theseriesincludes:
Crossindustry
Impactonindustrialecosystems
AIGovernance
Alliance
IncollaborationwithAccenture
TransformationofIndustriesintheAgeofAI
AIinAction:Beyond
Experimentationto
TransformIndustry
FLAGSHIPWHITEPAPERSERIES
JANUARY2025
AIGovernance
Alliance
IncollaborationwithAccenture
TransformationofIndustriesintheAgeofAI
ArtificialIntelligence’s
EnergyParadox:Balancing
ChallengesandOpportunities
WHITEPAPER
JANUARY2025
AIinAction:Beyond
Experimentationto
TransformIndustry
Leveraging
GenerativeAIforJob
Augmentationand
WorkforceProductivity
ArtificialIntelligence’s
EnergyParadox:
BalancingChallenges
andOpportunities
PwC
Incollaborationwith
LeveragingGenerativeAI
forJobAugmentationand
WorkforceProductivity:
andaFrameworkforAction
Scenarios,CaseStudies
INSIGHTREPORT
NOVEMBER2024
ArtificialIntelligence
andCybersecurity:
BalancingRisks
andRewards
ArtificialIntelligenceandCybersecurity:BalancingRisks
andRewards
WHITEPAPERJANUARY2025
AIGovernanceAlliance
IncollaborationwiththeGlobalCyberSecurityCapacityCentre,UniversityofOxford
TransformationofIndustriesintheAgeofAI
Regionalspecific
AIGovernance
Alliance
IncollaborationwithAccenture
TransformationofIndustriesintheAgeofAI
BlueprinttoAction:
China’sPathtoAI-Powered
IndustryTransformation
WHITEPAPER
JANUARY2025
BlueprinttoAction:
China’sPathto
AI-PoweredIndustry
Transformation
Impactonregions
Industryorfunctionspecific
Impactonindustries,sectorsandfunctions
Advanced
manufacturing
andsupplychains
IncollaborationwithBostonConsultingGroup
TransformationofIndustriesintheAgeofAI
FrontierTechnologies
inIndustrialOperations:TheRiseofArtificial
IntelligenceAgents
WHITEPAPERJANUARY2025
FrontierTechnologies
inIndustrial
Operations:The
RiseofArtificial
IntelligenceAgents
Financialservices
AIGovernance
Alliance
IncollaborationwithAccenture
TransformationofIndustriesintheAgeofAI
ArtificialIntelligence
inFinancialServices
WHITEPAPER
JANUARY2025
ArtificialIntelligence
inFinancialServices
Media,
entertainment
andsportHealthcareTransport
Incollaborationwith
McKnsey&Company
TransformationofIndustresntheAgeofAI
IntelligentTransport,
GreenerFuture:
AIasaCatalystto
Decarbonize
GlobalLogistics
WHITEPAPER
JANUARY2025
AIGovernance
Alliance
IncollaborationwithAccenture
TransformationofIndustriesintheAgeofAI
ArtificialIntelligenceinMedia,
EntertainmentandSport
WHITEPAPER
JANUARY2025
IncollaborationwithBostonConsultingGroup
TransformationofIndustriesintheAgeofAI
TheFutureofAI-EnabledHealth:
LeadingtheWay
WHITEPAPER
JANUARY2025
TheFutureof
AI-EnabledHealth:
LeadingtheWay
ArtificialIntelligencein
Media,Entertainment
andSport
IntelligentTransport,
GreenerFuture:
AIasaCatalyst
toDecarbonize
GlobalLogistics
Telecommunications
Upcoming
industryreport:
Telecommunications
Consumergoods
Upcoming
industryreport:
Consumergoods
Additionalreportstobeannounced.
AsAIcontinuestoevolveatanunprecedented
pace,eachpaperinthisseriescapturesauniqueperspectiveonAI–includingadetailedsnapshotofthelandscapeatthetimeofwriting.Recognizingthatongoingshiftsandadvancementsarealreadyinmotion,theaimistocontinuouslydeepenand
updatetheunderstandingofAI’simplicationsandapplicationsthroughcollaborationwiththecommunityofWorldEconomicForumpartners
andstakeholdersengagedinAIstrategyandimplementationacrossorganizations.
Together,thesepapersofferacomprehensiveviewofAI’scurrentdevelopmentandadoption,aswellasaviewofitsfuturepotentialimpact.
Eachpapercanbereadstand-aloneoralongsidetheothers,withcommonthemesemerging
acrossindustries.
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities4
January2025
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities
Foreword
RobertoBocca
Head,CentreforEnergyandMaterials;Member,ExecutiveCommittee,
WorldEconomicForum
JeremyJurgens
ManagingDirector,WorldEconomicForum
CathyLi
Head,AI,DataandMetaverse;
DeputyHead,Centre
fortheFourthIndustrialRevolution;Member,
ExecutiveCommittee,WorldEconomicForum
JamesMazurek
ManagingDirector,USUtilitiesStrategyLead,Accenture
Intodayseconomy,artificialintelligence(AI)systemsofferbothchallengesandopportunities.Asintegralcomponentsofdigitalinfrastructure,thedatacentresthatenableAIsupportavarietyofapplications,
fromcloudcomputingtocomplexdataprocessing.AIsrapidexpansion,however,isaccompaniedby
growingelectricitydemand,withthelargestfacilitiesintheworldusingthesameamountofpoweras
smallcitiestoensureuninterruptedoperation.Datacentrescomeinvaryingsizeshowever,rangingfromlarge,hyperscalefacilitieswithmorethan1gigawatt(GW)ofpowercapacity,tosmaller,microedge
deploymentsthatmaydrawlessthan10kilowatts(kW)ofpower.1
Oneestimatenowexpectsdata-centre-related
electricityconsumptiontogrowfromapproximately1%ofglobalelectricitydemandtoover2%by
2026,potentiallyreaching3%by2030ifforecastedgrowthcontinues.2Suchprojectionshaveraised
concernsaboutsupportingthisdemandwhilealsomeetingnet-zerocommitments.Simultaneously,AIcanbeapowerfultooltopositivelysupportwiderenergysystemtransformation.Forexample,itis
alreadybeingusedtoimproveenergyefficiencyacrossindustries,acceleraterenewableenergyintegrationandmakepowergridsmoreresilient.
ThisistheAIenergyparadoxbalancingthesechallengesagainstAI-enabledopportunities.
However,currentestimatesofAIsenergyimpactvary,andthemagnitudeofelectricitydemand
growthremainsunclear.Otherissuesincludealackofstandardizedtaxonomiesanddefinitions.
Theextenttowhichelectricitydemandgrowthwill
beoffsetbyefficiencygainsfromadvancements
intechnologies(e.g.chips,algorithmsetc.),data
centredesignandchangingregionaldynamics
isalsouncertain.Whileanear-termriseinAIs
electricityconsumptionisexpected,thefuture
magnitudeofthisgrowthmaydeclineduetothe
achievementofefficiencygains.Toachievethis,
itspivotaltounderstandinnovativemitigation
strategiesandsolutionsthatcaneffectivelyfacilitatethisbalance.
Overthepastyear,theWorldEconomicForums
AIGovernanceAlliancehasunitedindustryand
governmentwithcivilsocietyandacademia,
establishingaglobalmultistakeholdereffortto
ensureAIservesthegreatergoodwhilemaintainingresponsibility,inclusivityandaccountability.PlayersfromacrosstheAIvaluechainareconvenedto
cultivatemeaningfuldialogueonemergingAIissues.
WithAccentureasaknowledgepartner,the
alliancesAIEnergyImpactCommunity(composedofover40globalmembers)hasfacilitatedcross-industrydiscoursetowardsconsensusand
surfacedappliedusecasesonAIsenergyimpact.
Thispaperhighlightscross-industryinsightsfromadiversestakeholdergrouptooutlinemitigationstrategies:
IdentifyingelectricityusereductionstrategiesforAIsystems
TouchinguponAIspotentialforthewiderenergytransition
Outliningkeypartnerships,frameworksandpoliciestosupportsustainableAIadoption
TheincreaseinAIadoption,alongsideothermarketfactorsiscontributingtoincreasedelectricityuse.
Annualglobalelectricitydemandgrowthisnow
forecastedtoreachnearly3.5%inthecoming
years.3,4Thischallengeisamplifiedbyglobal
competitionforAIprojectsacrossregions.This
willrequirestakeholdersacrossthevaluechainto
navigatemarketpressuresforcomputingpower,
whilebalancingsustainabilitytargets,gridconstraintsandcommunityimpacts.
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities5
Executivesummary
Artificialintelligencepresentsenergyopportunitiesandchallenges–strategicmitigationcanhelp
tomaximizebenefitswhilereducingburdens.
Artificialintelligence(AI)isfacilitatinganewera
ofinnovation,withnearlythreeinfourcompaniesusingAIforatleastonebusinessfunction.5
Thisinnovationbringsmanybenefits,including
enhancedproductivity,newwaysofworkingand
revenuegrowth.AI-relatedelectricityconsumption
isexpectedtogrowbyasmuchas50%annually
from2023to2030.AIdatacentreconsumption,
whilegrowingrapidly,isprojectedtoremainasmallfractionofglobalelectricitydemand,startingat
just0.04%in2023(seeFigure4).However,when
combinedwithothermarketfactors(suchasgrowingelectricitydemandfortransport,buildingsandmore),AI’sacceleratedadoptioncouldpotentiallyincreasethestrainonpowergridsandelectricityproviders.
However,suchprojectionscanvary.6Uncertainty
remainsaroundhowprofoundAI’soverallenergy
impactwillbeandwhichstrategiescouldmitigatechallengesthatariseorenablenewsolution
opportunities.Inthiscontext,it’sessentialtoassesshowAIcouldacceleratetheenergytransitioninlinewithnet-zerogoals,aswellaswhichsupporting
ecosystemenablerscansupportthis.Thispaper
focusesonAI’selectricityimpactswhileaddressingthebroaderenergylandscape,includinggenerationandfuelsourcessupportingAI.
WorkundertheAIGovernanceAlliance(AIGA)
AIEnergyImpactInitiative
hassurfacedkeyinsightsonthesetopics.Theinitiativecollaborateswith
over40globalorganizationsacrossmorethannineindustriesdrivingAIadoption.
ThisanalysishighlightskeyfindingsrelevanttothreedistinctareasrelatedtoAI’sroleintransforming
energysystems:
1.ElectricityconsumptionofAI:ReviewingtheAIlifecycle,strategiesforreducingitsconsumptionandnewopportunitiesforprocessdigitalization
–AIadoptionvariesbysector,withelectricitydemandexpectedtorisesharply.However,projectionsremainuncertain,underscoringaneedforongoingassessment.
–OptimizingAI’sconsumptionincludes
harnessingtechnologicalinnovationssuchasenergy-efficientAIchiphardwareandAI-optimizedcoolingsolutions.
–Companiesarereducingdata
centreelectricityconsumptionthroughoperationalstrategieslikeAI-driven
environmentalcontrols,servervirtualizationandworkloaddistribution.
2.AI-enabledenergytransition:Exploring
innovative,emergingcompanyusecases
andthepotentialforscalingacrossindustries
–Existingusecasesdemonstratereducedenergyconsumptionof10-60%in
someinstances,withpotentialforfurtheroptimization.
–AIishelpingelectricityprovidersoptimizeoperationsviaenergystorage,enhancedbatteryefficiencyandsmartgrid.
–AIcansupportdecarbonization,helpingtoloweremissions,reducewasteandimproveresourceuse.
3.Primarychallengesandecosystem
enablers:Analysingregulation,policyandpartnershipsnecessaryforsustainableAIadoptionatscale
–EnablingsustainableAIrequiresa
multifacetedapproachspanning:regulationandpolicy,financialincentives,technologicalinnovationandmarketdevelopment.
–Regulatory,policyandfinancial
enablerscanincentivizeresponsibleAIthroughcomplianceframeworksandfundingmechanisms.
–Technologicalinnovationandmarket
developmentfosterresearch,collaborationandsustainableAIadoption.
ThiswhitepaperisapreliminaryexplorationofAI’senergy-relatedimpact,andoutlinesthekeychallengesandopportunitiesthatemergeasAIadoptiongrowsacrossindustries.ItconcludesbysharingfourareastomonitorforcontinuedunderstandingofAI’sevolvingenergyimpact:
–AIdeploymentfordecarbonization
–TransparentandefficientAIelectricityuse
–Innovationintechnologyanddesign
–Effectiveecosystemcollaboration
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities6
Introduction
AIisrevolutionizingindustries,resulting
ingrowingelectricitydemand,butpredictingAI-specificenergyimpactsremainscomplex.
GrowingdemandforAIOverallelectricitydemand
acrossindustriesgrowthdrivers
Artificialintelligence(AI)istransformingseveralSeveralmarketfactorscontributetoincreased
aspectsofdailylife.Fromautomatingsimpletasksglobalelectricitydemand.AsidefromAIand
toenablingcomplexproblem-solving,AIisdrivingtheelectrificationofbothtransportandbuildings,
innovation,increasingefficiencyandchanginghowothergrowthdriversincludeindustrialshiftstowards
societyoperates.Inparticular,generativeAIhaselectricmotors,urbanization,populationgrowth
emergedasapowerfultransformationalcatalystandtherisingadoptionofdigitaleconomysolutions.capableofautomatingtasksandreinventing
processesacrossvaluechains,therebyenhancingProjectingAI-specificgrowthischallenging,
performanceandcompetitiveness.7however,astechnologicaladvancementsand
differingadoptionratescomplicatepredictions.
WhileFigure1givessomeindication,further
researchisneededtoelucidatetherolethat
AI-relatedelectricitydemandgrowthplaysinthecontextofglobalenergytrends.
anddatacentresensitivitycases
OtherHeavyindustry
Otherbuildings
Otherindustry
Electricitydemand
growth,2023-30
Datacentres6760TWh
Spaceheating
Desalination
Electricvehicles
Spacecooling
Othertransport
Source:InternationalEnergyAgency(IEA).(2024).WorldEnergyOutlook.
FIGURE1ElectricitydemandgrowthbyenduseintheStatedPoliciesScenario(STEPS)2023-2030,
1
ElectricityconsumptionofAI
ModeldeploymentisAIsmostenergy-intensivestage(accountingforapproximately60%)
innovativestrategiescanmitigateconsumption.
TheAIlifecycle
1.1
TheAIlifecyclebeginswithplanninganddata
collection,duringwhichdataisgathered,processedandstored.8Next,themodeldevelopmentphase
includesdesign,problemanalysisanddata
preparation.Modeltrainingthenoptimizesthemodelthroughiterativedataexposure.Modeldeploymentsubsequentlyopensthemodelforreal-worldapplication.Lastly,monitoringandmaintenancesupportongoingrefinement.
Furtherresearchisneededtoestimateconsumptionforstages1and5,howeverestimatesexistforstages2-4.Withinthesethreestages,modeldeployment
isthemostenergy-intensive(approximately60-70%ofcombinedelectricityconsumption),butwilllikely
continuegrowinginthelongterm.Modeltrainingis
thenextmostenergy-intensive,accountingfor20-
40%ofconsumption,followedbymodeldevelopmentatupto10%.9Theseestimateshowever,willlikely
varyacrossdifferingAImodeltypes.
ElectricityconsumptionacrosstheAIlifecycle
FIGURE2
Stage1:
Planninganddata
collectionson
nature*
C
1
Stage5:
Monitoringandmaintenance*
5
3
4
2
Stage2:
Modeldevelopment
10%
</>
Stage4:
Deployment
60%
Stage3:
Modeltraining
30%
*Insufficientdataavailableforestimation
Source:ElectricPowerResearchInstitute(EPRI).(2024).PoweringIntelligence:AnalyzingArtificialIntelligenceandDataCenterEnergyConsumption.International
EnergyAgency(IEA).(2023).TrackingDataCentresandDataTransmissionNetworks.
/energy-system/buildings/data-centres-and-data-
transmission-networks
;D.Pattersonetal.(2022).TheCarbonFootprintofMachineLearningTrainingWillPlateau,ThenShrink.Computer,vol.55,no.7,pp.18-28.
/document/9810097
.
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities7
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities8
1.2
Theroleofdatacentres
–Coolingsystems(30-40%)tomaintainoptimaltemperatures.
–Auxiliarycomponents(10-30%),includingpowersupplies,securityandlighting.
NotethattheseproportionswillevolveovertimeasAIusebecomesmoreprevalent.
Harnessingpowerfulservers,specializedhardwareandadvancednetworkingcapabilities,datacentresenablethehigh-speedcomputationsanddata
processingrequiredforAI.
Withindatacentres,electricityconsumptionincludesthreemaincomponents:10
–ITequipment(40-50%),includingservers,storageandnetworksystems.
FIGURE3
Exampledatacentrelayout
UPS*
Holdandcoldaisles
Racks
Security
Enginegenerators
D
Cooling
Firesystem
*Uninterruptiblepowersupply
Source:Vianova.(n.d.).DataCenteroffer.
https://www.vianova.it/en/data-center/
.
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities9
1.3OpportunitiestoreduceAI
systemelectricityconsumption
DatacentreconsumptionincludesbothAI
Thisincreasedenergyintensity,however,is
accompaniedbytheadditionalbenefitsthat
capabilitieslikegenerativeAIcanprovide,includingtheabilitytoperformmorecomplexworkandto
enableexpandedvalueopportunities.
andnon-AIelements.AIprocessing,particularlyforgenerativeAI,ismoreenergy-intensive
duetolargemodelcomplexity,longertrainingdurationsandsubstantialdataprocessing.
FIGURE4Datacentredemandovertime
Datacentredemand(TWh):Non-AIversusAI
1400
1200
1000
800
600
400
200
0
2024202520262027202820292030
2023
Non-AIdemand(TWh)AIdemand(TWh)
Note:ThisisanextrapolatedscenariothatextendstheIEA’sforecastfrom2023to2026through2030usingacombinationof2021-2023historicalgrowthandtheirproposedgrowthratefrom2023-2026.
Source:InternationalEnergyAgency(IEA);Goldman;Accenture.
EnablingamoreenergyefficientAIsystemincludes
exploringopportunitieswithindatacentrestoreduceelectricityconsumption.Accordingly,anon-exhaustiveinventoryofexamplestrategiesareexploredbelow.
Datamanagementstrategies
WithinAI’sfirststage(planninganddatacollection),“digitaldecarbonization”techniquescanaddress
“darkdata”,whichoccupiesserverspaceandconsumeselectricitywithoutprovidingvalue.
Forsomeorganizations,darkdatamayaccountforasmuchas60-75%ofstoreddata.11
Digitaldecarbonizationstrategiescanidentifyandeliminatedarkdata,reducingstorageandelectricityconsumption.Opportunitiesmayalsoexistto
repurposedarkdatatogeneratevalue.
TABLE1Featureddatamanagementusecase
LoughboroughUniversity:automotiveindustrycollaboration:unlockingdarkdataforsustainableindustrialmaintenance
Approach
Aknowledgemanagementsystemwith
datascrapingandenrichmenttechniques
wasdevelopedtointegrateandstructure
darkdata,organizingitintovaluabledatasetsfordecision-making,andwastecategories
fordisposal.
Results
Intotal,10-20%ofdarkdatawas
transformedintoactionableknowledge,
Situation/context
“Darkdata”remainedinstorage,underusedduetopoorlystructuredformats.
improvingfaultanalysisandmaintenance,
enhancingdatareliability,reducingdowntime,loweringtheenvironmentalfootprintand
highlightingwastedata.
Source:Communityconsultation.
ArtificialIntelligence,sEnergyParadox:BalancingChallengesandOpportunities10
–Datacentreinfrastructuremanagement
softwareoptimizeselectricityuse,improvingsystemoperationandmaintenance.
–Advancedcoolingtechniquescanreduce
consumption,comparedtotraditionalmethods.
Technologicalstrategies
SeveraltechnologicalstrategiescanhelpenablesustainableAI:
–Energy-efficienthardware(e.g.chips)
andmodelsreduceelectricityconsumptionthroughouttheAIlifecycle.
–Innovative,insulatedbuildingmaterialsreducetheneedforheating,ventilationandcooling(HVAC)efforts.
TABLE2Featuredtechnologicalusecase
VirginMediaO2:AI-poweredcoolingoptimization
Approach
VirginimplementedEkkoSense’sAI-
enabledapproachtooptimizethermal,powerandcapacityperformanceacross20datacentres.
Results
Benefitsincludedcoolingsavingsworthover£1millionperyear,a15%coolingelectricityreductionanda760tonnesofCO2saving.
Situation/context
VirginMediaO2partneredwithEkkoSensetoimprovedatacentreefficiency.
Source:Communityconsultation.
–Virtualizationtechniquesreducephysicalserverrequirementsandconsumption.
–Temperatureoptimizationandhumiditymanagementreduceovercooling
andconsumption.
–Dynamicpowermanagementadjustsprocessingbasedonworkload,reducingconsumption.
Operationalstrategies
SeveraloperationalstrategiescanalsosupportsustainableAI:
–Incorporatingtargetenduse(model
developmentversustrainingversusdeployment)intositeselectionhelpsoptimizeefficiency
basedonworkload.
–Usingscalablebuildingdesignsthatgrowasdemandincreasesmitigatesoversizing.
TABLE3Featuredoperationalusecase
SAP:Aimingfor“green”datacentres
Situation/context
GreendatacentresarekeytoSAP’ssustainabilitystrategy.
Approach
SAPdatacentrestrackresourceuseand
minimizewastebyusingthermalcamerastooptimizeairflowandinsulation,whilealsoimplementingcool/hotaislecontainmenttosaveenergy.
Results
In2023,SAPachievedcarbonneutralityandisnowontracktoachievenetzeroalongitsvaluechainby2030.
Source:Communityconsultation.
2
AI-enabled
energytransition
AIsolutionscandriveenergyefficiencyacrosssectors,offeringdecarbonizationopportunitiesbyoptimizingoperationsandreducingresourceconsumption.
Extensivedecar
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車(chē)鄉(xiāng)鎮(zhèn)活動(dòng)策劃方案(3篇)
- 活動(dòng)策劃方案的難點(diǎn)(3篇)
- 清晨趣味活動(dòng)策劃方案(3篇)
- 焦?fàn)t放散施工方案(3篇)
- 班級(jí)新年活動(dòng)策劃方案(3篇)
- 電路水路施工方案(3篇)
- 礦山起重物資管理制度(3篇)
- 糧食采購(gòu)業(yè)務(wù)管理制度范本(3篇)
- 羌繡活動(dòng)策劃方案(3篇)
- 船舶遷移施工方案(3篇)
- 設(shè)計(jì)成果保密管理制度
- 珠寶文化課件
- GB/T 43590.506-2025激光顯示器件第5-6部分:投影屏幕光學(xué)性能測(cè)試方法
- 電工職業(yè)衛(wèi)生試題及答案
- 五年級(jí)第一學(xué)期勞動(dòng)課教學(xué)計(jì)劃和總結(jié)
- 《骨及關(guān)節(jié)疾病》課件
- QES三體系建筑施工企業(yè)管理手冊(cè)(含50430)
- 物業(yè)管理技巧與經(jīng)驗(yàn)分享
- GB/T 44179-2024交流電壓高于1 000 V和直流電壓高于1 500 V的變電站用空心支柱復(fù)合絕緣子定義、試驗(yàn)方法和接收準(zhǔn)則
- 德漢翻譯入門(mén)智慧樹(shù)知到期末考試答案章節(jié)答案2024年中國(guó)海洋大學(xué)
- MT-T 1199-2023 煤礦用防爆柴油機(jī)無(wú)軌膠輪運(yùn)輸車(chē)輛安全技術(shù)條件
評(píng)論
0/150
提交評(píng)論