2025年考研數(shù)學《概率論》沖刺押題試卷_第1頁
2025年考研數(shù)學《概率論》沖刺押題試卷_第2頁
2025年考研數(shù)學《概率論》沖刺押題試卷_第3頁
2025年考研數(shù)學《概率論》沖刺押題試卷_第4頁
2025年考研數(shù)學《概率論》沖刺押題試卷_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025年考研數(shù)學《概率論》沖刺押題試卷考試時間:______分鐘總分:______分姓名:______一、選擇題:本大題共5小題,每小題4分,共20分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)事件A與B互斥,且P(A)>0,P(B)>0,則下列結(jié)論中一定正確的是()(A)A與B獨立(B)A與B不獨立(C)A與B互為對立事件(D)A與B可能相互獨立2.設(shè)隨機變量X的分布函數(shù)為F(x),則P(X≤0)等于()(A)0(B)F(0)-(C)F(0)(D)1-F(0)3.設(shè)隨機變量X與Y獨立同分布,且均服從參數(shù)為λ的泊松分布,則E[X(Y-X)]等于()(A)λ(B)λ^2(C)λ^3(D)04.設(shè)二維隨機變量(X,Y)的聯(lián)合概率密度函數(shù)為f(x,y)=\begin{cases}cxy,&0≤x≤1,0≤y≤x\\0,&其他\end{cases},則常數(shù)c等于()(A)1(B)2(C)-1(D)-25.設(shè)隨機變量X和Y的期望E(X)=1,E(Y)=2,方差Var(X)=1,Var(Y)=4,且Cov(X,Y)=1,則X+2Y的方差Var(X+2Y)等于()(A)9(B)11(C)13(D)15二、填空題:本大題共4小題,每小題4分,共16分。6.設(shè)A,B,C為三個事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(AC)=P(BC)=1/8,P(ABC)=1/16,則P(A∪B∪C)等于________。7.設(shè)隨機變量X服從參數(shù)為n=10,p=0.2的二項分布,則P(X=3)等于________。8.設(shè)隨機變量X的密度函數(shù)為f(x)=\begin{cases}2x,&0≤x≤1\\0,&其他\end{cases},則P(0.5<X<1)等于________。9.設(shè)隨機變量X和Y的協(xié)方差Cov(X,Y)=3,X的方差Var(X)=4,Y的方差Var(Y)=9,則X和Y的相關(guān)系數(shù)ρ_{XY}等于________。三、解答題:本大題共6小題,共74分。解答應寫出文字說明、證明過程或演算步驟。10.(本題滿分12分)設(shè)隨機變量X和Y相互獨立,X的密度函數(shù)為f_X(x)=\begin{cases}1,&0≤x≤1\\0,&其他\end{cases},Y的密度函數(shù)為f_Y(y)=\begin{cases}e^{-y},&y>0\\0,&y≤0\end{cases}。求隨機變量Z=2X+Y的密度函數(shù)。11.(本題滿分12分)設(shè)隨機變量X和Y相互獨立,且都服從標準正態(tài)分布N(0,1)。求隨機變量U=X^2+Y^2和V=X^2-Y^2的協(xié)方差Cov(U,V)。12.(本題滿分12分)設(shè)隨機變量X的分布函數(shù)為F(x)=\begin{cases}0,&x<0\\x^2,&0≤x≤1\\1,&x>1\end{cases}。求隨機變量X的期望E(X)和方差Var(X)。13.(本題滿分13分)設(shè)二維隨機變量(X,Y)的聯(lián)合分布律如下表所示(其中a為常數(shù)):Y\X|0|1|----|------|------|0|0.1|a|1|0.3|0.2|(1)求常數(shù)a的值;(2)求隨機變量X的邊緣分布律;(3)判斷X和Y是否相互獨立。14.(本題滿分13分)從一批產(chǎn)品中重復抽取產(chǎn)品進行檢驗,每次抽取一件,假設(shè)抽到次品的概率為p(0<p<1),連續(xù)抽到第2件次品之前,最多只抽到3件正品。求p的矩估計量。15.(本題滿分10分)設(shè)總體X服從正態(tài)分布N(μ,σ^2),其中μ未知,σ^2已知。設(shè)X_1,X_2,...,X_n是從該總體中抽取的一個樣本。證明:統(tǒng)計量\bar{X}=\frac{1}{n}\sum_{i=1}^nX_i是總體均值μ的無偏估計量。試卷答案一、選擇題1.B2.C3.D4.B5.C二、填空題6.3/47.120/10248.3/49.1/3三、解答題10.解:因為X和Y相互獨立,所以Z=2X+Y的密度函數(shù)f_Z(z)可以通過卷積公式計算:f_Z(z)=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-2x)dx由于f_X(x)在[0,1]上為1,其他地方為0,f_Y(y)在y>0時為e^{-y},其他地方為0,所以需要考慮z-2x的取值范圍。當z<0時,f_Y(z-2x)永遠不為正,所以f_Z(z)=0。當0≤z≤2時,需要0≤x≤1且z-2x>0,即0≤x≤z/2,所以:f_Z(z)=\int_{0}^{z/2}1*e^{-(z-2x)}dx=e^{-z}\int_{0}^{z/2}e^{2x}dx=e^{-z}[e^{2x}/2]_{0}^{z/2}=e^{-z}[e^z/2-1/2]=(1/2)-(e^{-z}/2)當z>2時,需要0≤x≤1且z-2x>0,即(z/2)≤x≤1,所以:f_Z(z)=\int_{z/2}^{1}1*e^{-(z-2x)}dx=e^{-z}\int_{z/2}^{1}e^{2x}dx=e^{-z}[e^{2x}/2]_{z/2}^{1}=e^{-z}[e^2/2-e^z/(2e^z)]=e^{-z}[e^2/2-1/(2e^2)]=(e^2-1)/(2e^2)*e^{-z}綜上,Z的密度函數(shù)為:f_Z(z)=\begin{cases}0,&z<0\\(1/2)-(e^{-z}/2),&0≤z≤2\\(e^2-1)/(2e^2)*e^{-z},&z>2\end{cases}11.解:因為X和Y相互獨立且都服從N(0,1),所以X^2和Y^2都服從χ^2(1)分布,且X^2和Y^2相互獨立。Cov(U,V)=Cov(X^2+Y^2,X^2-Y^2)=Cov(X^2,X^2)-Cov(X^2,Y^2)由于X^2和Y^2獨立,Cov(X^2,Y^2)=0。Cov(X^2,X^2)=Var(X^2)E(X^2)=1(因為X~N(0,1))E(X^4)=3(因為X~N(0,1))Var(X^2)=E(X^4)-[E(X^2)]^2=3-1^2=2所以Cov(U,V)=2-0=212.解:E(X)=\int_{-\infty}^{+\infty}x*f(x)dx=\int_{0}^{1}x*2xdx=2\int_{0}^{1}x^2dx=2*[x^3/3]_{0}^{1}=2/3E(X^2)=\int_{-\infty}^{+\infty}x^2*f(x)dx=\int_{0}^{1}x^2*2xdx=2\int_{0}^{1}x^3dx=2*[x^4/4]_{0}^{1}=1/2Var(X)=E(X^2)-[E(X)]^2=1/2-(2/3)^2=1/2-4/9=1/1813.解:(1)由邊緣分布律性質(zhì),P(X=0)=P(X=0,Y=0)+P(X=0,Y=1)=0.1+0.3=0.4P(X=1)=P(X=1,Y=0)+P(X=1,Y=1)=a+0.2=1-P(X=0)=1-0.4=0.6所以a+0.2=0.6,得a=0.4。(2)X的邊緣分布律為:X|0|1|P|0.4|0.6|(3)判斷獨立性,需要看P(X=1,Y=1)是否等于P(X=1)P(Y=1)。P(X=1,Y=1)=0.2P(X=1)=0.6,P(Y=1)=P(Y=1,X=0)+P(Y=1,X=1)=0.3+0.2=0.5P(X=1)P(Y=1)=0.6*0.5=0.3因為P(X=1,Y=1)=0.2≠0.3=P(X=1)P(Y=1),所以X和Y不相互獨立。14.解:設(shè)X為抽到第2件次品之前抽到的正品件數(shù),則X的可能取值為0,1,2,3。X=0表示第一次抽到次品,P(X=0)=p。X=1表示第一次抽到正品,第二次抽到次品,P(X=1)=(1-p)p。X=2表示前兩次抽到正品,第三次抽到次品,P(X=2)=(1-p)^2*p。X=3表示前三次抽到正品,第四次抽到次品,P(X=3)=(1-p)^3*p。X≥4表示前四件都抽到正品,第五件抽到次品,P(X≥4)=(1-p)^4。題目條件“連續(xù)抽到第2件次品之前,最多只抽到3件正品”意味著X的可能取值為0,1,2,3。因此,樣本空間為S={0,1,2,3},對應的概率函數(shù)為:P(X=k)=\begin{cases}p,&k=0\\(1-p)p,&k=1\\(1-p)^2p,&k=2\\(1-p)^3p,&k=3\end{cases}總概率為1,驗證:(1-p)^4=1-p-(1-p)p-(1-p)^2p-(1-p)^3p=p^3,成立??傮w中次品的概率為p,抽到k件正品后再抽到次品的概率為p,所以P(X=k)是k次正品后抽到第1個次品的概率。E(X)=\sum_{k=0}^3k*P(X=k)=0*p+1*(1-p)p+2*(1-p)^2p+3*(1-p)^3p=p(1-p+2(1-p)^2+3(1-p)^3)E(X)=p(1-p+2(1-2p+p^2)+3(1-3p+3p^2-p^3))E(X)=p(1-p+2-4p+2p^2+3-9p+9p^2-3p^3)E(X)=p(6-14p+11p^2-3p^3)E(X)=6p-14p^2+11p^3-3p^4令g(p)=6p-14p^2+11p^3-3p^4,求g'(p):g'(p)=6-28p+33p^2-12p^3=3p^2(11-12p)+2(3-14p)=3p^2(11-12p)+2(3-14p)E(X)=\sum_{k=0}^3k*P(X=k)=\sum_{k=1}^3k*\binom{k}{k}*p^k*(1-p)^{k-1}=p\sum_{k=1}^3k*\binom{k-1}{1}*p^{k-1}*(1-p)^{k-2}=p\sum_{j=1}^2(j+1)*\binom{j}{1}*p^j*(1-p)^{j-1}=p\sum_{j=1}^2(j+1)*j*p^j*(1-p)^{j-1}=p\sum_{j=1}^2(j+1)*j*[p(1-p)^{j-1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]=p\sum_{j=1}^2(j+1)*j*[(1-p)^j-(1-p)^{j+1}]

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論