版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
一、選擇題1.已知,,…,均為正數(shù),且滿足,,則,的大小關(guān)系是()A. B. C. D.2.一列數(shù),,,……,其中=﹣1,=,=,……,=,則×××…×=()A.1 B.-1 C.2017 D.-20173.已知,為兩個連續(xù)的整數(shù),且,則的值等于()A. B. C. D.4.若,,則所有可能的值為()A.8 B.8或2 C.8或 D.或5.各個數(shù)位上數(shù)字的立方和等于其本身的三位數(shù)叫做“水仙花數(shù)”.例如153是“水仙花數(shù)”,因為.以下四個數(shù)中是“水仙花數(shù)”的是()A.135 B.220 C.345 D.4076.下列說法:①所有無理數(shù)都能用數(shù)軸上的點表示;②若一個數(shù)的平方根等于它本身,則這個數(shù)是0或1;③任何實數(shù)都有立方根;④的平方根是,其中正確的個數(shù)有()A.0個 B.1個 C.2個 D.3個7.如圖,點表示的數(shù)可能是()A. B. C. D.8.現(xiàn)定義一種新運算“*”,規(guī)定a*b=ab+a-b,如1*3=1×3+1-3,則(-2*5)*6等于()A.120 B.125 C.-120 D.-1259.在求的值時,小林發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的6倍,于是她設(shè):……①然后在①式的兩邊都乘以6,得:……②②-①得,即,所以.得出答案后,愛動腦筋的小林想:如果把“6”換成字母“a”(a≠0且a≠1),能否求出的值?你的答案是A. B. C. D.10.規(guī)定:f(x)=|x﹣2|,g(y)=|y+3|,例如f(﹣4)=|﹣4﹣2|=6,g(﹣4)=|﹣4+3|=1.下列結(jié)論正確的個數(shù)是()①若x=2,y=3,則f(x)+g(y)=6;②若f(x)+g(x)=0,則2x﹣3y=13;③若x<﹣3,則f(x)+g(x)=﹣1﹣2x;④能使f(x)=g(x)成立的x的值不存在.A.1個 B.2個 C.3個 D.4個二、填空題11.觀察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根據(jù)你發(fā)現(xiàn)的規(guī)律,則第20個等式為_____.12.對于任意有理數(shù)a,b,規(guī)定一種新的運算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.則(﹣2)⊙6的值為_____13.對于這樣的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,則﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值為_____.14.若|x|=3,y2=4,且x>y,則x﹣y=_____.15.現(xiàn)定義一種新運算:對任意有理數(shù)a、b,都有a?b=a2﹣b,例如3?2=32﹣2=7,2?(﹣1)=_____.16.對于正整數(shù)n,定義其中表示n的首位數(shù)字?末位數(shù)字的平方和.例如:,.規(guī)定,.例如:,.按此定義_____.17.若我們規(guī)定表示不小于x的最小整數(shù),例如,,則以下結(jié)論:①;②;③的最小值是0;④存在實數(shù)x使成立.其中正確的是______.(填寫所有正確結(jié)論的序號)18.我們可以用符號f(a)表示代數(shù)式.當(dāng)a是正整數(shù)時,我們規(guī)定如果a為偶數(shù),f(a)=0.5a;如果a為奇數(shù),f(a)=5a+1.例如:f(20)=10,f(5)=26.設(shè)a1=6,a2=f(a1),a3=f(a2)…;依此規(guī)律進(jìn)行下去,得到一列數(shù):a1,a2,a3,a4…(n為正整數(shù)),則2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.19.將1,,,按如圖方式排列.若規(guī)定(m,n)表示第m排從左向右第n個數(shù),如(5,4)表示的數(shù)是(即第5排從左向右第4個數(shù)),那么(2021,1011)所表示的數(shù)是___.20.對任意兩個實數(shù)a,b定義新運算:a⊕b=,并且定義新運算程序仍然是先做括號內(nèi)的,那么(⊕2)⊕3=___.三、解答題21.若一個四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個數(shù)為“前介數(shù)”;若把這個數(shù)的個位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個新的四位數(shù),則稱這個新的四位數(shù)為“中介數(shù)”;記一個“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個“前介數(shù)”t,P(t)一定能被9整除.(3)若一個千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請求出滿足條件的P(t)的最大值.22.給定一個十進(jìn)制下的自然數(shù),對于每個數(shù)位上的數(shù),求出它除以的余數(shù),再把每一個余數(shù)按照原來的數(shù)位順序排列,得到一個新的數(shù),定義這個新數(shù)為原數(shù)的“模二數(shù)”,記為.如.對于“模二數(shù)”的加法規(guī)定如下:將兩數(shù)末位對齊,從右往左依次將相應(yīng)數(shù)位.上的數(shù)分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進(jìn).如的“模二數(shù)”相加的運算過程如下圖所示.根據(jù)以上材料,解決下列問題:(1)的值為______,的值為_(2)如果兩個自然數(shù)的和的“模二數(shù)”與它們的“模二數(shù)”的和相等,則稱這兩個數(shù)“模二相加不變”.如,因為,所以,即與滿足“模二相加不變”.①判斷這三個數(shù)中哪些與“模二相加不變”,并說明理由;②與“模二相加不變”的兩位數(shù)有______個23.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:24.我們已經(jīng)學(xué)習(xí)了“乘方”運算,下面介紹一種新運算,即“對數(shù)”運算.定義:如果(a>0,a≠1,N>0),那么b叫做以a為底N的對數(shù),記作.例如:因為,所以;因為,所以.根據(jù)“對數(shù)”運算的定義,回答下列問題:(1)填空:,.(2)如果,求m的值.(3)對于“對數(shù)”運算,小明同學(xué)認(rèn)為有“(a>0,a≠1,M>0,N>0)”,他的說法正確嗎?如果正確,請給出證明過程;如果不正確,請說明理由,并加以改正.25.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動______位,其算術(shù)平方根的小數(shù)點向______移動______位.(2)已知,,則_____;______.(3),,,……小數(shù)點的變化規(guī)律是_______________________.(4)已知,,則______.26.探究與應(yīng)用:觀察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……問題:(1)在橫線上填上適當(dāng)?shù)臄?shù);(2)寫出一個能反映此計算一般規(guī)律的式子;(3)根據(jù)規(guī)律計算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(結(jié)果用科學(xué)記數(shù)法表示)27.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因為a、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.28.?dāng)?shù)學(xué)中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運算性質(zhì):.根據(jù)運算性質(zhì)填空,填空:若,則__________;___________;③下表中與數(shù)x對應(yīng)的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.29.下列等式:,,,將以上三個等式兩邊分別相加得:.(1)觀察發(fā)現(xiàn):__________.(2)初步應(yīng)用:利用(1)的結(jié)論,解決以下問題“①把拆成兩個分子為1的正的真分?jǐn)?shù)之差,即;②把拆成兩個分子為1的正的真分?jǐn)?shù)之和,即;(3)定義“”是一種新的運算,若,,,求的值.30.探究與應(yīng)用:觀察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……問題:(1)在橫線上填上適當(dāng)?shù)臄?shù);(2)寫出一個能反映此計算一般規(guī)律的式子;(3)根據(jù)規(guī)律計算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(結(jié)果用科學(xué)記數(shù)法表示)【參考答案】***試卷處理標(biāo)記,請不要刪除一、選擇題1.B解析:B【分析】設(shè),,然后求出MN的值,再與0進(jìn)行比較即可.【詳解】解:根據(jù)題意,設(shè),,∴,∴;;∴==;∴;故選:B.【點睛】本題考查了比較實數(shù)的大小,以及數(shù)字規(guī)律性問題,解題的關(guān)鍵是熟練掌握作差法比較大小.2.B解析:B【詳解】因為=﹣1,所以=,=,=,通過觀察可得:,,,……的值按照﹣1,,三個數(shù)值為一周期循環(huán),將2017除以3可得672余1,所以的值是第673個周期中第一個數(shù)值﹣1,因為每個周期三個數(shù)值的乘積為:,所以×××…×=故選B.3.B解析:B【分析】先估算出的取值范圍,利用“夾逼法”求得a、b的值,然后代入求值即可.【詳解】解:∵16<18<25,∴4<<5.∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=4,b=5,∴.故選:B.【點睛】本題考查了估算無理數(shù)的大小,熟知估算無理數(shù)的大小要用逼近法是解答此題的關(guān)鍵.4.D解析:D【分析】先求出a、b的值,再計算即可.【詳解】解:∵,∴a=±5,∵,∴b=±3,當(dāng)a=5,b=3時,;當(dāng)a=5,b=-3時,;當(dāng)a=-5,b=3時,;當(dāng)a=-5,b=-3時,;故選:D.【點睛】本題考查了絕對值、平方根和有理數(shù)加法運算,解題關(guān)鍵是分類討論,準(zhǔn)確計算.5.D解析:D【分析】分別算出某數(shù)各個數(shù)位上數(shù)字的立方和,看其是否等于某數(shù)本身,若等于即為“水仙花數(shù)”,若不等于,即不是“水仙花數(shù)”.【詳解】解:∵,∴A不是“水仙花數(shù)”;∵,∴B不是“水仙花數(shù)”;∵,∴C不是“水仙花數(shù)”;∵,∴D是“水仙花數(shù)”;故選D.【點睛】本題考查新定義下的實數(shù)運算,正確理解題目所給概念并熟練應(yīng)用實數(shù)運算法則去完成有關(guān)計算是解題關(guān)鍵.6.C解析:C【分析】分別根據(jù)相關(guān)的知識點對四個選項進(jìn)行判斷即可.【詳解】解:①所有無理數(shù)都能用數(shù)軸上的點表示,故①正確;②若一個數(shù)的平方根等于它本身,則這個數(shù)是0,故②錯誤;③任何實數(shù)都有立方根,③說法正確;④的平方根是,故④說法錯誤;故其中正確的個數(shù)有:2個.故選:C.【點睛】本題考查的是實數(shù),需要注意掌握實數(shù)的概念、平方根以及立方根的相關(guān)知識點.7.C解析:C【分析】先確定點A表示的數(shù)在3、4之間,再根據(jù)夾逼法逐項判斷即得答案.【詳解】解:點A表示的數(shù)在3、4之間,A、因為,所以,故本選項不符合題意;B、因為,所以,故本選項不符合題意;C、因為,所以,故本選項符合題意;D、因為,所以,故本選項不符合題意;故選:C.【點睛】本題考查了實數(shù)與數(shù)軸以及無理數(shù)的估算,屬于常見題型,正確理解題意、熟練掌握基本知識是解題的關(guān)鍵.8.D解析:D【詳解】根據(jù)題目中的運算方法a*b=ab+a-b,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故選D.點睛:本題主要考查了新定義運算,根據(jù)題目所給的規(guī)律(或運算方法),利用有理數(shù)的混合法則計算正確是解題關(guān)鍵.9.B解析:B【分析】首先根據(jù)題意,設(shè)M=1+a+a2+a3+a4+…+a2014,求出aM的值是多少,然后求出aM-M的值,即可求出M的值,據(jù)此求出1+a+a2+a3+a4+…+a2019的值是多少即可.【詳解】∵M(jìn)=1+a+a2+a3+a4+…+a2018①,∴aM=a+a2+a3+a4+…+a2014+a2019②,②-①,可得aM-M=a2019-1,即(a-1)M=a2019-1,∴M=.故選B.【點睛】考查了整式的混合運算的應(yīng)用,主要考查學(xué)生的理解能力和計算能力.10.C解析:C【分析】①根據(jù)公式代入計算即可判斷;②根據(jù)絕對值的非負(fù)性求出x及y的值,再代入計算進(jìn)行判斷;③根據(jù)公式利用絕對值的性質(zhì)化簡后計算即可判斷;④根據(jù)公式解絕對值方程即可判斷.【詳解】解:①∵x=2,y=3,∴f(x)+g(y)=f(2)+g(3)=|2﹣2|+|3+3|=0+6=6;故正確,符合題意;②∵f(x)+g(y)=|x﹣2|+|y+3|=0,∴x﹣2=0,y+3=0,∴x=2,y=﹣3,∴2x﹣3y=2×2﹣3×(﹣3)=13,故正確,符合題意;③若x<﹣3,則f(x)+g(x)=|x﹣2|+|x+3|=2﹣x﹣x﹣3=﹣1﹣2x,故正確,符合題意;④若f(x)=g(x),則|x﹣2|=|x+3|,即x﹣2=x+3或x﹣2=﹣x﹣3,解得:x=﹣0.5,即能使已知等式成立的x的值存在,故錯誤,不符合題意;故選:C.【點睛】此題考查有理數(shù)混合運算法則,絕對值的非負(fù)性,解一元一次方程,正確理解計算公式是解題的關(guān)鍵.二、填空題11.20﹣.【分析】觀察已知等式,找出等式左邊和右邊的規(guī)律,再歸納總結(jié)出一般規(guī)律,由此即可得出答案.【詳解】觀察已知等式,等式左邊的第一個數(shù)的規(guī)律為,第二個數(shù)的規(guī)律為:分子為,分母為等式右邊的解析:20﹣.【分析】觀察已知等式,找出等式左邊和右邊的規(guī)律,再歸納總結(jié)出一般規(guī)律,由此即可得出答案.【詳解】觀察已知等式,等式左邊的第一個數(shù)的規(guī)律為,第二個數(shù)的規(guī)律為:分子為,分母為等式右邊的規(guī)律為:分子為,分母為歸納類推得:第n個等式為(n為正整數(shù))當(dāng)時,這個等式為,即故答案為:.【點睛】本題考查了實數(shù)運算的規(guī)律型問題,從已知等式中歸納類推出一般規(guī)律是解題關(guān)鍵.12.-9【分析】直接利用已知運算法則計算得出答案.【詳解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案為﹣9.【點睛】此題考察新定義形式的有理數(shù)計算,解析:-9【分析】直接利用已知運算法則計算得出答案.【詳解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案為﹣9.【點睛】此題考察新定義形式的有理數(shù)計算,正確理解題意是解題的關(guān)鍵,依據(jù)題意正確列代數(shù)式計算即可.13.-1.【分析】根據(jù)多項式的乘法得出字母的值,進(jìn)而代入解答即可.【詳解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根據(jù)多項式的乘法得出字母的值,進(jìn)而代入解答即可.【詳解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案為:﹣1【點睛】本題考查了代數(shù)式求值,解題的關(guān)鍵是根據(jù)題意求得a0,a1,a2,a3,a4,a5的值.14.1或5.【分析】根據(jù)題意,利用絕對值的代數(shù)意義及平方根定義求出x與y的值,代入原式計算即可得到結(jié)果.【詳解】解:根據(jù)題意得:x=3,y=2或x=3,y=﹣2,則x﹣y=1或5.故答案為1解析:1或5.【分析】根據(jù)題意,利用絕對值的代數(shù)意義及平方根定義求出x與y的值,代入原式計算即可得到結(jié)果.【詳解】解:根據(jù)題意得:x=3,y=2或x=3,y=﹣2,則x﹣y=1或5.故答案為1或5.【點睛】此題考查了代數(shù)式求值,熟練掌握運算法則是解本題的關(guān)鍵.15.5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.解析:5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.16.145【分析】根據(jù)題意分別求出F1(4)到F8(4),通過計算發(fā)現(xiàn),F(xiàn)1(4)=F8(4),然后根據(jù)所得的規(guī)律即可求解.【詳解】解:F1(4)=16,F(xiàn)2(4)=F(16)=37,F(xiàn)3(4解析:145【分析】根據(jù)題意分別求出F1(4)到F8(4),通過計算發(fā)現(xiàn),F(xiàn)1(4)=F8(4),然后根據(jù)所得的規(guī)律即可求解.【詳解】解:F1(4)=16,F(xiàn)2(4)=F(16)=37,F(xiàn)3(4)=F(37)=58,F(xiàn)4(4)=F(58)=89,F(xiàn)5(4)=F(89)=145,F(xiàn)6(4)=F(145)=26,F(xiàn)7(4)=F(26)=40,F(xiàn)8(4)=F(40)=16,……通過計算發(fā)現(xiàn),F(xiàn)1(4)=F8(4),∴,∴;故答案為:145.【點睛】本題考查了有理數(shù)的乘方,新定義運算,能準(zhǔn)確理解定義,多計算一些數(shù)字,進(jìn)而確定循環(huán)規(guī)律是解題關(guān)鍵.17.③④【分析】根據(jù)的定義逐個判斷即可得.【詳解】①表示不小于的最小整數(shù),則,結(jié)論錯誤②,則,結(jié)論錯誤③表示不小于x的最小整數(shù),則,因此的最小值是0,結(jié)論正確④若,則此時,因此,存在實解析:③④【分析】根據(jù)的定義逐個判斷即可得.【詳解】①表示不小于的最小整數(shù),則,結(jié)論錯誤②,則,結(jié)論錯誤③表示不小于x的最小整數(shù),則,因此的最小值是0,結(jié)論正確④若,則此時,因此,存在實數(shù)x使成立,結(jié)論正確綜上,正確的是③④故答案為:③④.【點睛】本題考查了新定義下的實數(shù)運算,理解新定義是解題關(guān)鍵.18.7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進(jìn)而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結(jié)論解析:7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進(jìn)而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結(jié)論.【詳解】解:觀察,發(fā)現(xiàn)規(guī)律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴數(shù)列a1,a2,a3,a4…(n為正整數(shù))每7個數(shù)一循環(huán),∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案為7.【點睛】本題考查了規(guī)律型中的數(shù)字的變化類以及代數(shù)式求值,解題的關(guān)鍵是根據(jù)數(shù)的變化找出變換規(guī)律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0來解決問題.19.1【分析】所給一系列數(shù)是4個數(shù)一循環(huán),看是第幾個數(shù),除以4,根據(jù)余數(shù)得到相應(yīng)循環(huán)的數(shù)即可.【詳解】解:前2020排共有的個數(shù)是:,表示的數(shù)是第個數(shù),,第2021排的第1011個數(shù)為1.解析:1【分析】所給一系列數(shù)是4個數(shù)一循環(huán),看是第幾個數(shù),除以4,根據(jù)余數(shù)得到相應(yīng)循環(huán)的數(shù)即可.【詳解】解:前2020排共有的個數(shù)是:,表示的數(shù)是第個數(shù),,第2021排的第1011個數(shù)為1.故答案為:1.【點睛】本題考查算術(shù)平方根與規(guī)律型:數(shù)字的變化類,根據(jù)規(guī)律判斷出是第幾個數(shù)是解本題的關(guān)鍵.20.【分析】根據(jù)“⊕”的含義,以及實數(shù)的運算方法,求出算式的值是多少即可.【詳解】(⊕2)⊕3=⊕3=3,故答案為3.【點睛】本題考查了定義新運算,以及實數(shù)的運算,要熟練掌握,解答此題的關(guān)解析:【分析】根據(jù)“⊕”的含義,以及實數(shù)的運算方法,求出算式的值是多少即可.【詳解】(⊕2)⊕3=⊕3=3,故答案為3.【點睛】本題考查了定義新運算,以及實數(shù)的運算,要熟練掌握,解答此題的關(guān)鍵是要明確:在進(jìn)行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進(jìn)行.另外,有理數(shù)的運算律在實數(shù)范圍內(nèi)仍然適用.三、解答題21.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個數(shù);對應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個數(shù),計算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個數(shù),又對應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時,且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時,能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時,且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對應(yīng)的“中介數(shù)”是求解本題的關(guān)鍵.本題中運用到的分類討論思想是重要一種數(shù)學(xué)解題思想方法.22.(1)1011,1101;(2)①12,65,97,見解析,②38【分析】(1)根據(jù)“模二數(shù)”的定義計算即可;(2)①根據(jù)“模二數(shù)”和模二相加不變”的定義,分別計算和12+23,65+23,97+23的值,即可得出答案②設(shè)兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,根據(jù)a、b的奇偶性和“模二數(shù)”和模二相加不變”的定義進(jìn)行討論,從而得出與“模二相加不變”的兩位數(shù)的個數(shù)【詳解】解:(1),故答案為:①,,與滿足“模二相加不變”.,,,與不滿足“模二相加不變”.,,,與滿足“模二相加不變”②當(dāng)此兩位數(shù)小于77時,設(shè)兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,;當(dāng)a為偶數(shù),b為偶數(shù)時,∴∴與滿足“模二相加不變”有12個(28、48、68不符合)當(dāng)a為偶數(shù),b為奇數(shù)時,∴∴與不滿足“模二相加不變”.但27、47、67、29、49、69符合共6個當(dāng)a為奇數(shù),b為奇數(shù)時,∴∴與不滿足“模二相加不變”.但17、37、57、19、39、59也不符合當(dāng)a為奇數(shù),b為偶數(shù)時,∴∴與滿足“模二相加不變”有16個,(18、38、58不符合)當(dāng)此兩位數(shù)大于等于77時,符合共有4個綜上所述共有12+6+16+4=38故答案為:38【點睛】本題考查新定義,數(shù)字的變化類,認(rèn)真觀察、仔細(xì)思考,分類討論的數(shù)學(xué)思想是解決這類問題的方法.能夠理解定義是解題的關(guān)鍵.23.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.24.(1)1,4;(2)m=10;(3)不正確,改正見解析.【解析】試題分析:(1)根據(jù)新定義由61=6、34=81可得log66=1,log381=4;(2)根據(jù)定義知m﹣2=23,解之可得;(3)設(shè)ax=M,ay=N,則logaM=x、logaN=y,根據(jù)ax?ay=ax+y知ax+y=M?N,繼而得logaMN=x+y,據(jù)此即可得證.試題解析:解:(1)∵61=6,34=81,∴l(xiāng)og66=1,log381=4.故答案為:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正確,設(shè)ax=M,ay=N,則logaM=x,logaN=y(a>0,a≠1,M、N均為正數(shù)).∵ax?ay=,∴=M?N,∴l(xiāng)ogaMN=x+y,即logaMN=logaM+logaN.點睛:本題考查了有理數(shù)和整式的混合運算,解題的關(guān)鍵是明確題意,可以利用新定義進(jìn)行解答問題.25.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計算即可得到結(jié)果;(3)歸納總結(jié)得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計算即可得到結(jié)果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動兩位,其算術(shù)平方根的小數(shù)點向右移動一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點的變化規(guī)律是:被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)∵,,∴,∴,∴y=-0.01.【點睛】此題考查了立方根,以及算術(shù)平方根,弄清題中的規(guī)律是解本題的關(guān)鍵.26.(1)2、3、4、5;(2)第n個等式為1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1)根據(jù)從1開始連續(xù)n各奇數(shù)的和等于奇數(shù)的個數(shù)的平方即可得到.(2)根據(jù)規(guī)律寫出即可.(3)先提取符號,再用規(guī)律解題.【詳解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案為:2、3、4、5;(2)第n個等式為1+3+5+7+…+(2n+1)=(3)原式=﹣(1+3+5+7+9+…+2019)=﹣10102=﹣1.0201×106.【點睛】本題考查數(shù)字變化規(guī)律,解題的關(guān)鍵是找到第一個的規(guī)律,然后加以運用即可.27.7或-1.【分析】根據(jù)題目中給出的方法,對所求式子進(jìn)行變形,求出x、y的值,進(jìn)而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當(dāng)x=4時,x+y=4+3=7當(dāng)x=-4時,x+y=-4+3=-1∴x+y的值是7或-1.【點睛】本題考查實數(shù)的運算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運用類比的思想進(jìn)行解答.28.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據(jù)定義可得:f(10b)=b,即可求得結(jié)論;②根據(jù)運算性質(zhì):f(mn)=f(m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拼布工安全文明競賽考核試卷含答案
- 陶瓷裝飾工安全規(guī)程水平考核試卷含答案
- 有色擠壓工成果能力考核試卷含答案
- 聚酯裝置操作工安全防護(hù)水平考核試卷含答案
- 潛水救生員操作評估評優(yōu)考核試卷含答案
- 工業(yè)爐及電爐機械裝配工班組建設(shè)考核試卷含答案
- 銅門噴漆合同范本
- 分期扣款合同范本
- 探魚兼職合同范本
- 鐵工木工合同范本
- GB/T 11446.5-2013電子級水中痕量金屬的原子吸收分光光度測試方法
- 2023年武漢大學(xué)城市規(guī)劃考研真題
- 中考語文二輪復(fù)習(xí)《文言文斷句》課件
- 人教版高中地理必修一第二章《地球上大氣》單元檢測試題
- 食品配送應(yīng)急處突保障全新預(yù)案
- 我為班級添光彩-主題教育課程主題班會
- PICC導(dǎo)管相關(guān)血流感染課件
- 氣燒石灰窯熱工計算
- DBJ∕T45-093-2019 混凝土超高泵送施工技術(shù)規(guī)程
- 部編版九年級歷史(上)全冊教案
- 簡約立警為公執(zhí)法為民模板
評論
0/150
提交評論